/* FreeRDP: A Remote Desktop Protocol Client * Color conversion operations. * vi:ts=4 sw=4: * * Copyright 2011 Stephen Erisman * Copyright 2011 Norbert Federa * Copyright 2011 Martin Fleisz * (c) Copyright 2012 Hewlett-Packard Development Company, L.P. * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. You may obtain * a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express * or implied. See the License for the specific language governing * permissions and limitations under the License. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "prim_internal.h" #include "prim_colors.h" #ifndef MINMAX #define MINMAX(_v_, _l_, _h_) \ ((_v_) < (_l_) ? (_l_) : ((_v_) > (_h_) ? (_h_) : (_v_))) #endif /* !MINMAX */ /* ------------------------------------------------------------------------- */ pstatus_t general_yCbCrToRGB_16s8u_P3AC4R(const INT16* pSrc[3], int srcStep, BYTE* pDst, int dstStep, const prim_size_t* roi) { int x, y; INT16 R, G, B; float Y, Cb, Cr; BYTE* pRGB = pDst; const INT16* pY = pSrc[0]; const INT16* pCb = pSrc[1]; const INT16* pCr = pSrc[2]; int srcPad = (srcStep - (roi->width * 2)) / 2; int dstPad = (dstStep - (roi->width * 4)) / 4; for (y = 0; y < roi->height; y++) { for (x = 0; x < roi->width; x++) { Y = (float) (pY[0] + 4096); Cb = (float) (pCb[0]); Cr = (float) (pCr[0]); R = ((INT16) (((Cr * 1.402525f) + Y + 16.0f)) >> 5); G = ((INT16) ((Y - (Cb * 0.343730f) - (Cr * 0.714401f) + 16.0f)) >> 5); B = ((INT16) (((Cb * 1.769905f) + Y + 16.0f)) >> 5); if (R < 0) R = 0; else if (R > 255) R = 255; if (G < 0) G = 0; else if (G > 255) G = 255; if (B < 0) B = 0; else if (B > 255) B = 255; *pRGB++ = (BYTE) B; *pRGB++ = (BYTE) G; *pRGB++ = (BYTE) R; *pRGB++ = 0xFF; pY++; pCb++; pCr++; } pY += srcPad; pCb += srcPad; pCr += srcPad; pRGB += dstPad; } return PRIMITIVES_SUCCESS; } pstatus_t general_yCbCrToBGR_16s8u_P3AC4R(const INT16* pSrc[3], int srcStep, BYTE* pDst, int dstStep, const prim_size_t* roi) { int x, y; INT16 R, G, B; float Y, Cb, Cr; BYTE* pRGB = pDst; const INT16* pY = pSrc[0]; const INT16* pCb = pSrc[1]; const INT16* pCr = pSrc[2]; int srcPad = (srcStep - (roi->width * 2)) / 2; int dstPad = (dstStep - (roi->width * 4)) / 4; for (y = 0; y < roi->height; y++) { for (x = 0; x < roi->width; x++) { Y = (float) (pY[0] + 4096); Cb = (float) (pCb[0]); Cr = (float) (pCr[0]); R = ((INT16) (((Cr * 1.402525f) + Y + 16.0f)) >> 5); G = ((INT16) ((Y - (Cb * 0.343730f) - (Cr * 0.714401f) + 16.0f)) >> 5); B = ((INT16) (((Cb * 1.769905f) + Y + 16.0f)) >> 5); if (R < 0) R = 0; else if (R > 255) R = 255; if (G < 0) G = 0; else if (G > 255) G = 255; if (B < 0) B = 0; else if (B > 255) B = 255; *pRGB++ = (BYTE) R; *pRGB++ = (BYTE) G; *pRGB++ = (BYTE) B; *pRGB++ = 0xFF; pY++; pCb++; pCr++; } pY += srcPad; pCb += srcPad; pCr += srcPad; pRGB += dstPad; } return PRIMITIVES_SUCCESS; } /* ------------------------------------------------------------------------- */ pstatus_t general_yCbCrToRGB_16s16s_P3P3( const INT16 *pSrc[3], INT32 srcStep, INT16 *pDst[3], INT32 dstStep, const prim_size_t *roi) /* region of interest */ { /** * The decoded YCbCr coeffectients are represented as 11.5 fixed-point * numbers: * * 1 sign bit + 10 integer bits + 5 fractional bits * * However only 7 integer bits will be actually used since the value range * is [-128.0, 127.0]. In other words, the decoded coefficients are scaled * by << 5 when interpreted as INT16. * It was scaled in the quantization phase, so we must scale it back here. */ const INT16 *yptr = pSrc[0]; const INT16 *cbptr = pSrc[1]; const INT16 *crptr = pSrc[2]; INT16 *rptr = pDst[0]; INT16 *gptr = pDst[1]; INT16 *bptr = pDst[2]; int srcbump = (srcStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16); int dstbump = (dstStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16); int y; for (y=0; yheight; y++) { int x; for (x=0; xwidth; ++x) { /* INT32 is used intentionally because we calculate * with shifted factors! */ INT32 y = (INT32) (*yptr++); INT32 cb = (INT32) (*cbptr++); INT32 cr = (INT32) (*crptr++); INT32 r,g,b; /* * This is the slow floating point version kept here for reference. * y = y + 4096; // 128<<5=4096 so that we can scale the sum by>>5 * r = y + cr*1.403f; * g = y - cb*0.344f - cr*0.714f; * b = y + cb*1.770f; * y_r_buf[i] = MINMAX(r>>5, 0, 255); * cb_g_buf[i] = MINMAX(g>>5, 0, 255); * cr_b_buf[i] = MINMAX(b>>5, 0, 255); */ /* * We scale the factors by << 16 into 32-bit integers in order to * avoid slower floating point multiplications. Since the final * result needs to be scaled by >> 5 we will extract only the * upper 11 bits (>> 21) from the final sum. * Hence we also have to scale the other terms of the sum by << 16. * R: 1.403 << 16 = 91947 * G: 0.344 << 16 = 22544, 0.714 << 16 = 46792 * B: 1.770 << 16 = 115998 */ y = (y+4096)<<16; r = y + cr*91947; g = y - cb*22544 - cr*46792; b = y + cb*115998; *rptr++ = MINMAX(r>>21, 0, 255); *gptr++ = MINMAX(g>>21, 0, 255); *bptr++ = MINMAX(b>>21, 0, 255); } yptr += srcbump; cbptr += srcbump; crptr += srcbump; rptr += dstbump; gptr += dstbump; bptr += dstbump; } return PRIMITIVES_SUCCESS; } /* ------------------------------------------------------------------------- */ pstatus_t general_RGBToYCbCr_16s16s_P3P3( const INT16 *pSrc[3], INT32 srcStep, INT16 *pDst[3], INT32 dstStep, const prim_size_t *roi) /* region of interest */ { /* The encoded YCbCr coefficients are represented as 11.5 fixed-point * numbers: * * 1 sign bit + 10 integer bits + 5 fractional bits * * However only 7 integer bits will be actually used since the value * range is [-128.0, 127.0]. In other words, the encoded coefficients * is scaled by << 5 when interpreted as INT16. * It will be scaled down to original during the quantization phase. */ const INT16 *rptr = pSrc[0]; const INT16 *gptr = pSrc[1]; const INT16 *bptr = pSrc[2]; INT16 *yptr = pDst[0]; INT16 *cbptr = pDst[1]; INT16 *crptr = pDst[2]; int srcbump = (srcStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16); int dstbump = (dstStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16); int y; for (y=0; yheight; y++) { int x; for (x=0; xwidth; ++x) { /* INT32 is used intentionally because we calculate with * shifted factors! */ INT32 r = (INT32) (*rptr++); INT32 g = (INT32) (*gptr++); INT32 b = (INT32) (*bptr++); /* We scale the factors by << 15 into 32-bit integers in order * to avoid slower floating point multiplications. Since the * terms need to be scaled by << 5 we simply scale the final * sum by >> 10 * * Y: 0.299000 << 15 = 9798, 0.587000 << 15 = 19235, * 0.114000 << 15 = 3735 * Cb: 0.168935 << 15 = 5535, 0.331665 << 15 = 10868, * 0.500590 << 15 = 16403 * Cr: 0.499813 << 15 = 16377, 0.418531 << 15 = 13714, * 0.081282 << 15 = 2663 */ INT32 y = (r * 9798 + g * 19235 + b * 3735) >> 10; INT32 cb = (r * -5535 + g * -10868 + b * 16403) >> 10; INT32 cr = (r * 16377 + g * -13714 + b * -2663) >> 10; *yptr++ = (INT16) MINMAX(y - 4096, -4096, 4095); *cbptr++ = (INT16) MINMAX(cb, -4096, 4095); *crptr++ = (INT16) MINMAX(cr, -4096, 4095); } yptr += srcbump; cbptr += srcbump; crptr += srcbump; rptr += dstbump; gptr += dstbump; bptr += dstbump; } return PRIMITIVES_SUCCESS; } /* ------------------------------------------------------------------------- */ pstatus_t general_RGBToRGB_16s8u_P3AC4R( const INT16 *pSrc[3], /* 16-bit R,G, and B arrays */ int srcStep, /* bytes between rows in source data */ BYTE *pDst, /* 32-bit interleaved ARGB (ABGR?) data */ int dstStep, /* bytes between rows in dest data */ const prim_size_t *roi) /* region of interest */ { const INT16 *r = pSrc[0]; const INT16 *g = pSrc[1]; const INT16 *b = pSrc[2]; BYTE *dst = pDst; int x,y; int srcbump = (srcStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16); int dstbump = (dstStep - (roi->width * sizeof(UINT32))); for (y=0; yheight; ++y) { for (x=0; xwidth; ++x) { *dst++ = (BYTE) (*b++); *dst++ = (BYTE) (*g++); *dst++ = (BYTE) (*r++); *dst++ = ((BYTE) (0xFFU)); } dst += dstbump; r += srcbump; g += srcbump; b += srcbump; } return PRIMITIVES_SUCCESS; } /* ------------------------------------------------------------------------- */ void primitives_init_colors(primitives_t* prims) { prims->yCbCrToRGB_16s8u_P3AC4R = general_yCbCrToRGB_16s8u_P3AC4R; prims->yCbCrToBGR_16s8u_P3AC4R = general_yCbCrToBGR_16s8u_P3AC4R; prims->yCbCrToRGB_16s16s_P3P3 = general_yCbCrToRGB_16s16s_P3P3; prims->RGBToYCbCr_16s16s_P3P3 = general_RGBToYCbCr_16s16s_P3P3; prims->RGBToRGB_16s8u_P3AC4R = general_RGBToRGB_16s8u_P3AC4R; primitives_init_colors_opt(prims); } /* ------------------------------------------------------------------------- */ void primitives_deinit_colors(primitives_t* prims) { /* Nothing to do. */ }