fix: Improve test tool schema gen runtime (#1719)

This commit is contained in:
Matthew Zhou 2025-04-15 14:01:40 -07:00 committed by GitHub
parent 6a461017f8
commit 0437273211

View File

@ -1,7 +1,10 @@
import importlib.util
import inspect
import json
import multiprocessing as mp
import os
import time
from functools import partial
import pytest
from pydantic import BaseModel
@ -79,107 +82,198 @@ def _run_schema_test(schema_name: str, desired_function_name: str, expect_struct
_compare_schemas(structured_output, expected_structured_output, strip_heartbeat=False)
return (schema_name, True) # Return success status
def test_derive_openai_json_schema():
"""Test that the schema generator works across a variety of example source code inputs."""
print("==== TESTING basic example where the arg is a pydantic model ====")
_run_schema_test("pydantic_as_single_arg_example", "create_step")
# Define test cases
test_cases = [
("pydantic_as_single_arg_example", "create_step", False),
("list_of_pydantic_example", "create_task_plan", False),
("nested_pydantic_as_arg_example", "create_task_plan", False),
("simple_d20", "roll_d20", False),
("all_python_complex", "check_order_status", True),
("all_python_complex_nodict", "check_order_status", False),
]
print("==== TESTING basic example where the arg is a list of pydantic models ====")
_run_schema_test("list_of_pydantic_example", "create_task_plan")
# Create a multiprocessing pool
pool = mp.Pool(processes=min(mp.cpu_count(), len(test_cases)))
print("==== TESTING more complex example where the arg is a nested pydantic model ====")
_run_schema_test("nested_pydantic_as_arg_example", "create_task_plan")
# Run tests in parallel
results = []
for schema_name, function_name, expect_fail in test_cases:
print(f"==== TESTING {schema_name} ====")
# Use apply_async for non-blocking parallel execution
result = pool.apply_async(_run_schema_test, args=(schema_name, function_name, expect_fail))
results.append((schema_name, result))
print("==== TESTING simple function with no args ====")
_run_schema_test("simple_d20", "roll_d20")
# Collect results and check for failures
for schema_name, result in results:
try:
schema_name_result, success = result.get(timeout=60) # Wait for the result with timeout
assert success, f"Test for {schema_name} failed"
print(f"Test for {schema_name} passed")
except Exception as e:
print(f"Test for {schema_name} failed with error: {str(e)}")
raise
print("==== TESTING complex function with many args ====")
_run_schema_test("all_python_complex", "check_order_status", expect_structured_output_fail=True)
print("==== TESTING complex function with many args and no dict ====")
# TODO we should properly cast Optionals into union nulls
# Currently, we just disregard all Optional types on the conversion path
_run_schema_test("all_python_complex_nodict", "check_order_status")
# Close the pool
pool.close()
pool.join()
def _openai_payload(model: str, schema: dict, structured_output: bool):
def _openai_payload(test_config):
"""Create an OpenAI payload with a tool call.
Raw version of openai_chat_completions_request w/o pydantic models
Args:
test_config: A tuple containing (filename, model, structured_output)
Returns:
A tuple of (filename, model, structured_output, success, error_message)
"""
if structured_output:
tool_schema = convert_to_structured_output(schema)
else:
tool_schema = schema
api_key = os.getenv("OPENAI_API_KEY")
assert api_key is not None, "OPENAI_API_KEY must be set"
# Simple system prompt to encourage the LLM to jump directly to a tool call
system_prompt = "You job is to test the tool that you've been provided. Don't ask for any clarification on the args, just come up with some dummy data and try executing the tool."
url = "https://api.openai.com/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
data = {
"model": model,
"messages": [
{"role": "system", "content": system_prompt},
],
"tools": [
{
"type": "function",
"function": tool_schema,
}
],
"tool_choice": "auto", # TODO force the tool call on the one we want
# NOTE: disabled for simplicity
"parallel_tool_calls": False,
}
print("Request:\n", json.dumps(data, indent=2), "\n\n")
filename, model, structured_output = test_config
success = False
error_message = None
try:
# Load schema
with open(os.path.join(os.path.dirname(__file__), f"test_tool_schema_parsing_files/{filename}.py"), "r") as file:
source_code = file.read()
schema = derive_openai_json_schema(source_code)
# Check if we expect the conversion to fail
if filename == "all_python_complex" and structured_output:
try:
convert_to_structured_output(schema)
error_message = "Expected ValueError for all_python_complex with structured_output=True"
return (filename, model, structured_output, False, error_message)
except ValueError:
# This is expected
success = True
return (filename, model, structured_output, success, error_message)
# Generate tool schema
if structured_output:
tool_schema = convert_to_structured_output(schema)
else:
tool_schema = schema
api_key = os.getenv("OPENAI_API_KEY")
assert api_key is not None, "OPENAI_API_KEY must be set"
# Simple system prompt to encourage the LLM to jump directly to a tool call
system_prompt = "You job is to test the tool that you've been provided. Don't ask for any clarification on the args, just come up with some dummy data and try executing the tool."
url = "https://api.openai.com/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
data = {
"model": model,
"messages": [
{"role": "system", "content": system_prompt},
],
"tools": [
{
"type": "function",
"function": tool_schema,
}
],
"tool_choice": "auto",
"parallel_tool_calls": False,
}
make_post_request(url, headers, data)
success = True
except Exception as e:
print(f"Request failed, tool_schema=\n{json.dumps(tool_schema, indent=2)}")
print(f"Error: {e}")
raise e
error_message = str(e)
return (filename, model, structured_output, success, error_message)
def _load_schema_from_source_filename(filename: str) -> dict:
with open(os.path.join(os.path.dirname(__file__), f"test_tool_schema_parsing_files/{filename}.py"), "r") as file:
source_code = file.read()
return derive_openai_json_schema(source_code)
# @pytest.mark.parametrize("openai_model", ["gpt-4o-mini"])
# @pytest.mark.parametrize("structured_output", [True])
@pytest.mark.parametrize("openai_model", ["gpt-4", "gpt-4o"])
@pytest.mark.parametrize("openai_model", ["gpt-4o"])
@pytest.mark.parametrize("structured_output", [True, False])
def test_valid_schemas_via_openai(openai_model: str, structured_output: bool):
"""Test that we can send the schemas to OpenAI and get a tool call back."""
for filename in [
start_time = time.time()
# Define all test configurations
filenames = [
"pydantic_as_single_arg_example",
"list_of_pydantic_example",
"nested_pydantic_as_arg_example",
"simple_d20",
"all_python_complex",
"all_python_complex_nodict",
]:
print(f"==== TESTING OPENAI PAYLOAD FOR {openai_model} + {filename} ====")
schema = _load_schema_from_source_filename(filename)
]
# We should expect the all_python_complex one to fail when structured_output=True
if filename == "all_python_complex" and structured_output:
with pytest.raises(ValueError):
_openai_payload(openai_model, schema, structured_output)
test_configs = []
for filename in filenames:
test_configs.append((filename, openai_model, structured_output))
# Run tests in parallel using a process pool (more efficient for API calls)
pool = mp.Pool(processes=min(mp.cpu_count(), len(test_configs)))
results = pool.map(_openai_payload, test_configs)
# Check results and handle failures
for filename, model, structured, success, error_message in results:
print(f"Test for {filename}, {model}, structured_output={structured}: {'SUCCESS' if success else 'FAILED'}")
if not success:
if filename == "all_python_complex" and structured and "Expected ValueError" in error_message:
pytest.fail(f"Failed for {filename} with {model}, structured_output={structured}: {error_message}")
elif not (filename == "all_python_complex" and structured):
pytest.fail(f"Failed for {filename} with {model}, structured_output={structured}: {error_message}")
pool.close()
pool.join()
end_time = time.time()
print(f"Total execution time: {end_time - start_time:.2f} seconds")
# Parallel implementation for Composio test
def _run_composio_test(action_name, openai_model, structured_output):
"""Run a single Composio test case in parallel"""
try:
tool_create = ToolCreate.from_composio(action_name=action_name)
assert tool_create.json_schema
schema = tool_create.json_schema
if structured_output:
tool_schema = convert_to_structured_output(schema)
else:
_openai_payload(openai_model, schema, structured_output)
tool_schema = schema
api_key = os.getenv("OPENAI_API_KEY")
assert api_key is not None, "OPENAI_API_KEY must be set"
system_prompt = "You job is to test the tool that you've been provided. Don't ask for any clarification on the args, just come up with some dummy data and try executing the tool."
url = "https://api.openai.com/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_prompt},
],
"tools": [
{
"type": "function",
"function": tool_schema,
}
],
"tool_choice": "auto",
"parallel_tool_calls": False,
}
make_post_request(url, headers, data)
return (action_name, True, None) # Success
except Exception as e:
return (action_name, False, str(e)) # Failure with error message
@pytest.mark.parametrize("openai_model", ["gpt-4o-mini"])
@ -190,24 +284,32 @@ def test_composio_tool_schema_generation(openai_model: str, structured_output: b
if not os.getenv("COMPOSIO_API_KEY"):
pytest.skip("COMPOSIO_API_KEY not set")
for action_name in [
start_time = time.time()
action_names = [
"GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER", # Simple
"CAL_GET_AVAILABLE_SLOTS_INFO", # has an array arg, needs to be converted properly
"SALESFORCE_RETRIEVE_LEAD_DETAILS_BY_ID_WITH_CONDITIONAL_SUPPORT", # has an array arg, needs to be converted properly
]:
tool_create = ToolCreate.from_composio(action_name=action_name)
"SALESFORCE_RETRIEVE_LEAD_DETAILS_BY_ID_WITH_CONDITIONAL_SUPPORT",
# has an array arg, needs to be converted properly
]
assert tool_create.json_schema
schema = tool_create.json_schema
print(f"The schema for {action_name}: {json.dumps(schema, indent=4)}\n\n")
# Create a pool of processes
pool = mp.Pool(processes=min(mp.cpu_count(), len(action_names)))
try:
_openai_payload(openai_model, schema, structured_output)
print(f"Successfully called OpenAI using schema {schema} generated from {action_name}\n\n")
except:
print(f"Failed to call OpenAI using schema {schema} generated from {action_name}\n\n")
# Map the work to the pool
func = partial(_run_composio_test, openai_model=openai_model, structured_output=structured_output)
results = pool.map(func, action_names)
raise
# Check results
for action_name, success, error_message in results:
print(f"Test for {action_name}: {'SUCCESS' if success else 'FAILED - ' + error_message}")
assert success, f"Test for {action_name} failed: {error_message}"
pool.close()
pool.join()
end_time = time.time()
print(f"Total execution time: {end_time - start_time:.2f} seconds")
@pytest.mark.parametrize("openai_model", ["gpt-4o-mini"])
@ -230,27 +332,44 @@ def test_langchain_tool_schema_generation(openai_model: str, structured_output:
print(f"The schema for {langchain_tool.name}: {json.dumps(schema, indent=4)}\n\n")
try:
_openai_payload(openai_model, schema, structured_output)
print(f"Successfully called OpenAI using schema {schema} generated from {langchain_tool.name}\n\n")
except:
print(f"Failed to call OpenAI using schema {schema} generated from {langchain_tool.name}\n\n")
if structured_output:
tool_schema = convert_to_structured_output(schema)
else:
tool_schema = schema
api_key = os.getenv("OPENAI_API_KEY")
assert api_key is not None, "OPENAI_API_KEY must be set"
system_prompt = "You job is to test the tool that you've been provided. Don't ask for any clarification on the args, just come up with some dummy data and try executing the tool."
url = "https://api.openai.com/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_prompt},
],
"tools": [
{
"type": "function",
"function": tool_schema,
}
],
"tool_choice": "auto",
"parallel_tool_calls": False,
}
make_post_request(url, headers, data)
print(f"Successfully called OpenAI using schema generated from {langchain_tool.name}\n\n")
except Exception:
print(f"Failed to call OpenAI using schema generated from {langchain_tool.name}\n\n")
raise
@pytest.mark.parametrize("openai_model", ["gpt-4", "gpt-4o"])
@pytest.mark.parametrize("structured_output", [True, False])
def test_valid_schemas_with_pydantic_args_schema(openai_model: str, structured_output: bool):
"""Test that we can send the schemas to OpenAI and get a tool call back."""
for filename in [
"pydantic_as_single_arg_example",
"list_of_pydantic_example",
"nested_pydantic_as_arg_example",
"simple_d20",
"all_python_complex",
"all_python_complex_nodict",
]:
# Helper function for pydantic args schema test
def _run_pydantic_args_test(filename, openai_model, structured_output):
"""Run a single pydantic args schema test case"""
try:
# Import the module dynamically
file_path = os.path.join(os.path.dirname(__file__), f"test_tool_schema_parsing_files/{filename}.py")
spec = importlib.util.spec_from_file_location(filename, file_path)
@ -278,11 +397,83 @@ def test_valid_schemas_with_pydantic_args_schema(openai_model: str, structured_o
)
schema = tool.json_schema
print(f"==== TESTING OPENAI PAYLOAD FOR {openai_model} + {filename} ====")
# We should expect the all_python_complex one to fail when structured_output=True
# We expect this to fail for all_python_complex with structured_output=True
if filename == "all_python_complex" and structured_output:
with pytest.raises(ValueError):
_openai_payload(openai_model, schema, structured_output)
try:
convert_to_structured_output(schema)
return (filename, False, "Expected ValueError but conversion succeeded")
except ValueError:
return (filename, True, None) # This is expected
# Make the API call
if structured_output:
tool_schema = convert_to_structured_output(schema)
else:
_openai_payload(openai_model, schema, structured_output)
tool_schema = schema
api_key = os.getenv("OPENAI_API_KEY")
assert api_key is not None, "OPENAI_API_KEY must be set"
system_prompt = "You job is to test the tool that you've been provided. Don't ask for any clarification on the args, just come up with some dummy data and try executing the tool."
url = "https://api.openai.com/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_prompt},
],
"tools": [
{
"type": "function",
"function": tool_schema,
}
],
"tool_choice": "auto",
"parallel_tool_calls": False,
}
make_post_request(url, headers, data)
return (filename, True, None) # Success
except Exception as e:
return (filename, False, str(e)) # Failure with error message
@pytest.mark.parametrize("openai_model", ["gpt-4o"])
@pytest.mark.parametrize("structured_output", [True, False])
def test_valid_schemas_with_pydantic_args_schema(openai_model: str, structured_output: bool):
"""Test that we can send the schemas to OpenAI and get a tool call back."""
start_time = time.time()
filenames = [
"pydantic_as_single_arg_example",
"list_of_pydantic_example",
"nested_pydantic_as_arg_example",
"simple_d20",
"all_python_complex",
"all_python_complex_nodict",
]
# Create a pool of processes
pool = mp.Pool(processes=min(mp.cpu_count(), len(filenames)))
# Map the work to the pool
func = partial(_run_pydantic_args_test, openai_model=openai_model, structured_output=structured_output)
results = pool.map(func, filenames)
# Check results
for filename, success, error_message in results:
print(f"Test for {filename}: {'SUCCESS' if success else 'FAILED - ' + error_message}")
# Special handling for expected failure
if filename == "all_python_complex" and structured_output:
assert success, f"Expected failure handling for {filename} didn't work: {error_message}"
else:
assert success, f"Test for {filename} failed: {error_message}"
pool.close()
pool.join()
end_time = time.time()
print(f"Total execution time: {end_time - start_time:.2f} seconds")