mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
merge conflict 2
This commit is contained in:
parent
4d8a3eacdf
commit
06f7e5e741
@ -202,10 +202,6 @@ class LettaAgent(BaseAgent):
|
||||
3. Fetches a response from the LLM
|
||||
4. Processes the response
|
||||
"""
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
agent_state = await self.agent_manager.get_agent_by_id_async(self.agent_id, actor=self.actor)
|
||||
>>>>>>> main
|
||||
current_in_context_messages, new_in_context_messages = await _prepare_in_context_messages_async(
|
||||
input_messages, agent_state, self.message_manager, self.actor
|
||||
)
|
||||
@ -216,10 +212,6 @@ class LettaAgent(BaseAgent):
|
||||
actor=self.actor,
|
||||
)
|
||||
usage = LettaUsageStatistics()
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
|
||||
>>>>>>> main
|
||||
for _ in range(max_steps):
|
||||
step_id = generate_step_id()
|
||||
|
||||
@ -238,7 +230,6 @@ class LettaAgent(BaseAgent):
|
||||
tool_rules_solver=tool_rules_solver,
|
||||
# TODO: pass in reasoning content
|
||||
)
|
||||
<<<<<<< HEAD
|
||||
log_event("agent.step.llm_request.created") # [2^]
|
||||
|
||||
try:
|
||||
@ -352,8 +343,6 @@ class LettaAgent(BaseAgent):
|
||||
raise llm_client.handle_llm_error(e)
|
||||
log_event("agent.stream.llm_response.received") # [3^]
|
||||
|
||||
=======
|
||||
>>>>>>> main
|
||||
# TODO: THIS IS INCREDIBLY UGLY
|
||||
# TODO: THERE ARE MULTIPLE COPIES OF THE LLM_CONFIG EVERYWHERE THAT ARE GETTING MANIPULATED
|
||||
if agent_state.llm_config.model_endpoint_type == "anthropic":
|
||||
@ -366,7 +355,6 @@ class LettaAgent(BaseAgent):
|
||||
use_assistant_message=use_assistant_message,
|
||||
put_inner_thoughts_in_kwarg=agent_state.llm_config.put_inner_thoughts_in_kwargs,
|
||||
)
|
||||
<<<<<<< HEAD
|
||||
else:
|
||||
raise ValueError(f"Streaming not supported for {agent_state.llm_config}")
|
||||
|
||||
@ -375,8 +363,6 @@ class LettaAgent(BaseAgent):
|
||||
ttft_span = tracer.start_span("time_to_first_token", start_time=request_start_timestamp_ns)
|
||||
ttft_span.set_attributes({f"llm_config.{k}": v for k, v in agent_state.llm_config.model_dump().items() if v is not None})
|
||||
|
||||
=======
|
||||
>>>>>>> main
|
||||
async for chunk in interface.process(stream):
|
||||
# Measure time to first token
|
||||
if first_chunk and ttft_span is not None:
|
||||
@ -414,7 +400,6 @@ class LettaAgent(BaseAgent):
|
||||
self.response_messages.extend(persisted_messages)
|
||||
new_in_context_messages.extend(persisted_messages)
|
||||
|
||||
<<<<<<< HEAD
|
||||
# TODO (cliandy): the stream POST request span has ended at this point, we should tie this to the stream
|
||||
# log_event("agent.stream.llm_response.processed") # [4^]
|
||||
|
||||
@ -442,8 +427,6 @@ class LettaAgent(BaseAgent):
|
||||
),
|
||||
)
|
||||
|
||||
=======
|
||||
>>>>>>> main
|
||||
if not use_assistant_message or should_continue:
|
||||
tool_return = [msg for msg in persisted_messages if msg.role == "tool"][-1].to_letta_messages()[0]
|
||||
yield f"data: {tool_return.model_dump_json()}\n\n"
|
||||
@ -473,7 +456,6 @@ class LettaAgent(BaseAgent):
|
||||
agent_state: AgentState,
|
||||
tool_rules_solver: ToolRulesSolver,
|
||||
) -> ChatCompletion | AsyncStream[ChatCompletionChunk]:
|
||||
<<<<<<< HEAD
|
||||
self.num_messages = self.num_messages or (await self.message_manager.size_async(actor=self.actor, agent_id=agent_state.id))
|
||||
self.num_archival_memories = self.num_archival_memories or (
|
||||
await self.passage_manager.size_async(actor=self.actor, agent_id=agent_state.id)
|
||||
@ -481,21 +463,6 @@ class LettaAgent(BaseAgent):
|
||||
in_context_messages = await self._rebuild_memory_async(
|
||||
in_context_messages, agent_state, num_messages=self.num_messages, num_archival_memories=self.num_archival_memories
|
||||
)
|
||||
=======
|
||||
if settings.experimental_enable_async_db_engine:
|
||||
self.num_messages = self.num_messages or (await self.message_manager.size_async(actor=self.actor, agent_id=agent_state.id))
|
||||
self.num_archival_memories = self.num_archival_memories or (
|
||||
await self.passage_manager.size_async(actor=self.actor, agent_id=agent_state.id)
|
||||
)
|
||||
in_context_messages = await self._rebuild_memory_async(
|
||||
in_context_messages, agent_state, num_messages=self.num_messages, num_archival_memories=self.num_archival_memories
|
||||
)
|
||||
else:
|
||||
if settings.experimental_skip_rebuild_memory and agent_state.llm_config.model_endpoint_type == "google_vertex":
|
||||
logger.info("Skipping memory rebuild")
|
||||
else:
|
||||
in_context_messages = self._rebuild_memory(in_context_messages, agent_state)
|
||||
>>>>>>> main
|
||||
|
||||
tools = [
|
||||
t
|
||||
@ -625,10 +592,6 @@ class LettaAgent(BaseAgent):
|
||||
pre_computed_tool_message_id=pre_computed_tool_message_id,
|
||||
step_id=logged_step.id if logged_step else None, # TODO (cliandy): eventually move over other agent loops
|
||||
)
|
||||
<<<<<<< HEAD
|
||||
|
||||
=======
|
||||
>>>>>>> main
|
||||
persisted_messages = await self.message_manager.create_many_messages_async(tool_call_messages, actor=self.actor)
|
||||
self.last_function_response = function_response
|
||||
|
||||
@ -716,10 +679,7 @@ class LettaAgent(BaseAgent):
|
||||
results = await asyncio.gather(*tasks)
|
||||
return results
|
||||
|
||||
<<<<<<< HEAD
|
||||
@trace_method
|
||||
=======
|
||||
>>>>>>> main
|
||||
async def _load_last_function_response_async(self):
|
||||
"""Load the last function response from message history"""
|
||||
in_context_messages = await self.agent_manager.get_in_context_messages_async(agent_id=self.agent_id, actor=self.actor)
|
||||
|
Loading…
Reference in New Issue
Block a user