Refactor out the testing functions so we can use this for benchmarking

This commit is contained in:
Matt Zhou 2024-10-03 18:33:42 -07:00
parent fade94b66b
commit 80b3946eba
2 changed files with 190 additions and 202 deletions

View File

@ -2,9 +2,11 @@ import json
import uuid
from typing import Callable, List, Optional, Union
from letta import LocalClient, RESTClient
from letta import LocalClient, RESTClient, create_client
from letta.agent import Agent
from letta.config import LettaConfig
from letta.constants import DEFAULT_HUMAN, DEFAULT_PERSONA
from letta.embeddings import embedding_model
from letta.errors import (
InvalidFunctionCallError,
InvalidInnerMonologueError,
@ -12,7 +14,7 @@ from letta.errors import (
MissingFunctionCallError,
MissingInnerMonologueError,
)
from letta.llm_api.llm_api_tools import unpack_inner_thoughts_from_kwargs
from letta.llm_api.llm_api_tools import create, unpack_inner_thoughts_from_kwargs
from letta.local_llm.constants import INNER_THOUGHTS_KWARG
from letta.schemas.agent import AgentState
from letta.schemas.embedding_config import EmbeddingConfig
@ -26,11 +28,16 @@ from letta.schemas.llm_config import LLMConfig
from letta.schemas.memory import ChatMemory
from letta.schemas.openai.chat_completion_response import Choice, FunctionCall, Message
from letta.utils import get_human_text, get_persona_text
from tests.helpers.utils import cleanup
# Generate uuid for agent name for this example
namespace = uuid.NAMESPACE_DNS
agent_uuid = str(uuid.uuid5(namespace, "test-endpoints-agent"))
# defaults (letta hosted)
embedding_config_path = "configs/embedding_model_configs/letta-hosted.json"
llm_config_path = "configs/llm_model_configs/letta-hosted.json"
# ======================================================================================================================
# Section: Test Setup
@ -41,7 +48,6 @@ agent_uuid = str(uuid.uuid5(namespace, "test-endpoints-agent"))
def setup_agent(
client: Union[LocalClient, RESTClient],
filename: str,
embedding_config_path: str,
memory_human_str: str = get_human_text(DEFAULT_HUMAN),
memory_persona_str: str = get_persona_text(DEFAULT_PERSONA),
tools: Optional[List[str]] = None,
@ -62,6 +68,181 @@ def setup_agent(
return agent_state
def check_first_response_is_valid_for_llm_endpoint(filename: str, inner_thoughts_in_kwargs: bool = False):
"""
Checks that the first response is valid:
1. Contains either send_message or archival_memory_search
2. Contains valid usage of the function
3. Contains inner monologue
Note: This is acting on the raw LLM response, note the usage of `create`
"""
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
agent_state = setup_agent(client, filename, embedding_config_path)
tools = [client.get_tool(client.get_tool_id(name=name)) for name in agent_state.tools]
agent = Agent(
interface=None,
tools=tools,
agent_state=agent_state,
)
response = create(
llm_config=agent_state.llm_config,
user_id=str(uuid.UUID(int=1)), # dummy user_id
messages=agent._messages,
functions=agent.functions,
functions_python=agent.functions_python,
)
# Basic check
assert response is not None
# Select first choice
choice = response.choices[0]
# Ensure that the first message returns a "send_message"
validator_func = lambda function_call: function_call.name == "send_message" or function_call.name == "archival_memory_search"
assert_contains_valid_function_call(choice.message, validator_func)
# Assert that the message has an inner monologue
assert_contains_correct_inner_monologue(choice, inner_thoughts_in_kwargs)
def check_response_contains_keyword(filename: str):
"""
Checks that the prompted response from the LLM contains a chosen keyword
Note: This is acting on the Letta response, note the usage of `user_message`
"""
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
agent_state = setup_agent(client, filename, embedding_config_path)
keyword = "banana"
keyword_message = f'This is a test to see if you can see my message. If you can see my message, please respond by calling send_message using a message that includes the word "{keyword}"'
response = client.user_message(agent_id=agent_state.id, message=keyword_message)
# Basic checks
assert_sanity_checks(response)
# Make sure the message was sent
assert_invoked_send_message_with_keyword(response.messages, keyword)
# Make sure some inner monologue is present
assert_inner_monologue_is_present_and_valid(response.messages)
def check_agent_uses_external_tool(filename: str):
"""
Checks that the LLM will use external tools if instructed
Note: This is acting on the Letta response, note the usage of `user_message`
"""
from crewai_tools import ScrapeWebsiteTool
from letta.schemas.tool import Tool
crewai_tool = ScrapeWebsiteTool(website_url="https://www.example.com")
tool = Tool.from_crewai(crewai_tool)
tool_name = tool.name
# Set up client
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
client.add_tool(tool)
# Set up persona for tool usage
persona = f"""
My name is Letta.
I am a personal assistant who answers a user's questions about a website `example.com`. When a user asks me a question about `example.com`, I will use a tool called {tool_name} which will search `example.com` and answer the relevant question.
Dont forget - inner monologue / inner thoughts should always be different than the contents of send_message! send_message is how you communicate with the user, whereas inner thoughts are your own personal inner thoughts.
"""
agent_state = setup_agent(client, filename, embedding_config_path, memory_persona_str=persona, tools=[tool_name])
response = client.user_message(agent_id=agent_state.id, message="What's on the example.com website?")
# Basic checks
assert_sanity_checks(response)
# Make sure the tool was called
assert_invoked_function_call(response.messages, tool_name)
# Make sure some inner monologue is present
assert_inner_monologue_is_present_and_valid(response.messages)
def check_agent_recall_chat_memory(filename: str):
"""
Checks that the LLM will recall the chat memory, specifically the human persona.
Note: This is acting on the Letta response, note the usage of `user_message`
"""
# Set up client
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
human_name = "BananaBoy"
agent_state = setup_agent(client, filename, embedding_config_path, memory_human_str=f"My name is {human_name}")
response = client.user_message(agent_id=agent_state.id, message="Repeat my name back to me.")
# Basic checks
assert_sanity_checks(response)
# Make sure my name was repeated back to me
assert_invoked_send_message_with_keyword(response.messages, human_name)
# Make sure some inner monologue is present
assert_inner_monologue_is_present_and_valid(response.messages)
def check_agent_archival_memory_retrieval(filename: str):
"""
Checks that the LLM will execute an archival memory retrieval.
Note: This is acting on the Letta response, note the usage of `user_message`
"""
# Set up client
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
agent_state = setup_agent(client, filename, embedding_config_path)
secret_word = "banana"
client.insert_archival_memory(agent_state.id, f"The secret word is {secret_word}!")
response = client.user_message(agent_id=agent_state.id, message="Search archival memory for the secret word and repeat it back to me.")
# Basic checks
assert_sanity_checks(response)
# Make sure archival_memory_search was called
assert_invoked_function_call(response.messages, "archival_memory_search")
# Make sure secret was repeated back to me
assert_invoked_send_message_with_keyword(response.messages, secret_word)
# Make sure some inner monologue is present
assert_inner_monologue_is_present_and_valid(response.messages)
def run_embedding_endpoint(filename):
# load JSON file
config_data = json.load(open(filename, "r"))
print(config_data)
embedding_config = EmbeddingConfig(**config_data)
model = embedding_model(embedding_config)
query_text = "hello"
query_vec = model.get_text_embedding(query_text)
print("vector dim", len(query_vec))
assert query_vec is not None
# ======================================================================================================================
# Section: Letta Message Assertions
# These functions are validating elements of parsed Letta Messsage

View File

@ -1,212 +1,19 @@
import json
import os
import uuid
from letta import create_client
from letta.agent import Agent
from letta.embeddings import embedding_model
from letta.llm_api.llm_api_tools import create
from letta.prompts import gpt_system
from letta.schemas.embedding_config import EmbeddingConfig
from letta.schemas.message import Message
from tests.helpers.endpoints_helper import (
agent_uuid,
assert_contains_correct_inner_monologue,
assert_contains_valid_function_call,
assert_inner_monologue_is_present_and_valid,
assert_invoked_function_call,
assert_invoked_send_message_with_keyword,
assert_sanity_checks,
setup_agent,
check_agent_archival_memory_retrieval,
check_agent_recall_chat_memory,
check_agent_uses_external_tool,
check_first_response_is_valid_for_llm_endpoint,
check_response_contains_keyword,
run_embedding_endpoint,
)
from tests.helpers.utils import cleanup
messages = [Message(role="system", text=gpt_system.get_system_text("memgpt_chat")), Message(role="user", text="How are you?")]
# defaults (letta hosted)
embedding_config_path = "configs/embedding_model_configs/letta-hosted.json"
llm_config_path = "configs/llm_model_configs/letta-hosted.json"
# directories
embedding_config_dir = "configs/embedding_model_configs"
llm_config_dir = "configs/llm_model_configs"
def check_first_response_is_valid_for_llm_endpoint(filename: str, inner_thoughts_in_kwargs: bool = False):
"""
Checks that the first response is valid:
1. Contains either send_message or archival_memory_search
2. Contains valid usage of the function
3. Contains inner monologue
Note: This is acting on the raw LLM response, note the usage of `create`
"""
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
agent_state = setup_agent(client, filename, embedding_config_path)
tools = [client.get_tool(client.get_tool_id(name=name)) for name in agent_state.tools]
agent = Agent(
interface=None,
tools=tools,
agent_state=agent_state,
)
response = create(
llm_config=agent_state.llm_config,
user_id=str(uuid.UUID(int=1)), # dummy user_id
messages=agent._messages,
functions=agent.functions,
functions_python=agent.functions_python,
)
# Basic check
assert response is not None
# Select first choice
choice = response.choices[0]
# Ensure that the first message returns a "send_message"
validator_func = lambda function_call: function_call.name == "send_message" or function_call.name == "archival_memory_search"
assert_contains_valid_function_call(choice.message, validator_func)
# Assert that the message has an inner monologue
assert_contains_correct_inner_monologue(choice, inner_thoughts_in_kwargs)
def check_response_contains_keyword(filename: str):
"""
Checks that the prompted response from the LLM contains a chosen keyword
Note: This is acting on the Letta response, note the usage of `user_message`
"""
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
agent_state = setup_agent(client, filename, embedding_config_path)
keyword = "banana"
keyword_message = f'This is a test to see if you can see my message. If you can see my message, please respond by calling send_message using a message that includes the word "{keyword}"'
response = client.user_message(agent_id=agent_state.id, message=keyword_message)
# Basic checks
assert_sanity_checks(response)
# Make sure the message was sent
assert_invoked_send_message_with_keyword(response.messages, keyword)
# Make sure some inner monologue is present
assert_inner_monologue_is_present_and_valid(response.messages)
def check_agent_uses_external_tool(filename: str):
"""
Checks that the LLM will use external tools if instructed
Note: This is acting on the Letta response, note the usage of `user_message`
"""
from crewai_tools import ScrapeWebsiteTool
from letta.schemas.tool import Tool
crewai_tool = ScrapeWebsiteTool(website_url="https://www.example.com")
tool = Tool.from_crewai(crewai_tool)
tool_name = tool.name
# Set up client
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
client.add_tool(tool)
# Set up persona for tool usage
persona = f"""
My name is Letta.
I am a personal assistant who answers a user's questions about a website `example.com`. When a user asks me a question about `example.com`, I will use a tool called {tool_name} which will search `example.com` and answer the relevant question.
Dont forget - inner monologue / inner thoughts should always be different than the contents of send_message! send_message is how you communicate with the user, whereas inner thoughts are your own personal inner thoughts.
"""
agent_state = setup_agent(client, filename, embedding_config_path, memory_persona_str=persona, tools=[tool_name])
response = client.user_message(agent_id=agent_state.id, message="What's on the example.com website?")
# Basic checks
assert_sanity_checks(response)
# Make sure the tool was called
assert_invoked_function_call(response.messages, tool_name)
# Make sure some inner monologue is present
assert_inner_monologue_is_present_and_valid(response.messages)
def check_agent_recall_chat_memory(filename: str):
"""
Checks that the LLM will recall the chat memory, specifically the human persona.
Note: This is acting on the Letta response, note the usage of `user_message`
"""
# Set up client
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
human_name = "BananaBoy"
agent_state = setup_agent(client, filename, embedding_config_path, memory_human_str=f"My name is {human_name}")
response = client.user_message(agent_id=agent_state.id, message="Repeat my name back to me.")
# Basic checks
assert_sanity_checks(response)
# Make sure my name was repeated back to me
assert_invoked_send_message_with_keyword(response.messages, human_name)
# Make sure some inner monologue is present
assert_inner_monologue_is_present_and_valid(response.messages)
def check_agent_archival_memory_retrieval(filename: str):
"""
Checks that the LLM will execute an archival memory retrieval.
Note: This is acting on the Letta response, note the usage of `user_message`
"""
# Set up client
client = create_client()
cleanup(client=client, agent_uuid=agent_uuid)
agent_state = setup_agent(client, filename, embedding_config_path)
secret_word = "banana"
client.insert_archival_memory(agent_state.id, f"The secret word is {secret_word}!")
response = client.user_message(agent_id=agent_state.id, message="Search archival memory for the secret word and repeat it back to me.")
# Basic checks
assert_sanity_checks(response)
# Make sure archival_memory_search was called
assert_invoked_function_call(response.messages, "archival_memory_search")
# Make sure secret was repeated back to me
assert_invoked_send_message_with_keyword(response.messages, secret_word)
# Make sure some inner monologue is present
assert_inner_monologue_is_present_and_valid(response.messages)
def run_embedding_endpoint(filename):
# load JSON file
config_data = json.load(open(filename, "r"))
print(config_data)
embedding_config = EmbeddingConfig(**config_data)
model = embedding_model(embedding_config)
query_text = "hello"
query_vec = model.get_text_embedding(query_text)
print("vector dim", len(query_vec))
assert query_vec is not None
# ======================================================================================================================
# OPENAI TESTS
# ======================================================================================================================