import inspect import warnings from typing import Any, Dict, List, Optional, Type, Union, get_args, get_origin from composio.client.collections import ActionParametersModel from docstring_parser import parse from pydantic import BaseModel from letta.functions.mcp_client.types import MCPTool def is_optional(annotation): # Check if the annotation is a Union if getattr(annotation, "__origin__", None) is Union: # Check if None is one of the options in the Union return type(None) in annotation.__args__ return False def optional_length(annotation): if is_optional(annotation): # Subtract 1 to account for NoneType return len(annotation.__args__) - 1 else: raise ValueError("The annotation is not an Optional type") def type_to_json_schema_type(py_type) -> dict: """ Maps a Python type to a JSON schema type. Specifically handles typing.Optional and common Python types. """ # if get_origin(py_type) is typing.Optional: if is_optional(py_type): # Assert that Optional has only one type argument type_args = get_args(py_type) assert optional_length(py_type) == 1, f"Optional type must have exactly one type argument, but got {py_type}" # Extract and map the inner type return type_to_json_schema_type(type_args[0]) # Handle Union types (except Optional which is handled above) if get_origin(py_type) is Union: # TODO support mapping Unions to anyOf raise NotImplementedError("General Union types are not yet supported") # Handle array types origin = get_origin(py_type) if py_type == list or origin in (list, List): args = get_args(py_type) if len(args) == 0: # is this correct warnings.warn("Defaulting to string type for untyped List") return { "type": "array", "items": {"type": "string"}, } if args and inspect.isclass(args[0]) and issubclass(args[0], BaseModel): # If it's a list of Pydantic models, return an array with the model schema as items return { "type": "array", "items": pydantic_model_to_json_schema(args[0]), } # Otherwise, recursively call the basic type checker return { "type": "array", # get the type of the items in the list "items": type_to_json_schema_type(args[0]), } # Handle object types if py_type == dict or origin in (dict, Dict): args = get_args(py_type) if not args: # Generic dict without type arguments return { "type": "object", # "properties": {} } else: raise ValueError( f"Dictionary types {py_type} with nested type arguments are not supported (consider using a Pydantic model instead)" ) # NOTE: the below code works for generic JSON schema parsing, but there's a problem with the key inference # when it comes to OpenAI function schema generation so it doesn't make sense to allow for dict[str, Any] type hints # key_type, value_type = args # # Ensure dict keys are strings # # Otherwise there's no JSON schema equivalent # if key_type != str: # raise ValueError("Dictionary keys must be strings for OpenAI function schema compatibility") # # Handle value type to determine property schema # value_schema = {} # if inspect.isclass(value_type) and issubclass(value_type, BaseModel): # value_schema = pydantic_model_to_json_schema(value_type) # else: # value_schema = type_to_json_schema_type(value_type) # # NOTE: the problem lies here - the key is always "key_placeholder" # return {"type": "object", "properties": {"key_placeholder": value_schema}} # Handle direct Pydantic models if inspect.isclass(py_type) and issubclass(py_type, BaseModel): return pydantic_model_to_json_schema(py_type) # Mapping of Python types to JSON schema types type_map = { # Basic types # Optional, Union, and collections are handled above ^ int: "integer", str: "string", bool: "boolean", float: "number", None: "null", } if py_type not in type_map: raise ValueError(f"Python type {py_type} has no corresponding JSON schema type - full map: {type_map}") else: return {"type": type_map[py_type]} def pydantic_model_to_open_ai(model: Type[BaseModel]) -> dict: """ Converts a Pydantic model as a singular arg to a JSON schema object for use in OpenAI function calling. """ schema = model.model_json_schema() docstring = parse(model.__doc__ or "") parameters = {k: v for k, v in schema.items() if k not in ("title", "description")} for param in docstring.params: if (name := param.arg_name) in parameters["properties"] and (description := param.description): if "description" not in parameters["properties"][name]: parameters["properties"][name]["description"] = description parameters["required"] = sorted(k for k, v in parameters["properties"].items() if "default" not in v) if "description" not in schema: if docstring.short_description: schema["description"] = docstring.short_description else: raise ValueError(f"No description found in docstring or description field (model: {model}, docstring: {docstring})") return { "name": schema["title"], "description": schema["description"], "parameters": parameters, } def pydantic_model_to_json_schema(model: Type[BaseModel]) -> dict: """ Converts a Pydantic model (as an arg that already is annotated) to a JSON schema object for use in OpenAI function calling. An example of a Pydantic model as an arg: class Step(BaseModel): name: str = Field( ..., description="Name of the step.", ) key: str = Field( ..., description="Unique identifier for the step.", ) description: str = Field( ..., description="An exhaustic description of what this step is trying to achieve and accomplish.", ) def create_task_plan(steps: list[Step]): ''' Creates a task plan for the current task. Args: steps: List of steps to add to the task plan. ... Should result in: { "name": "create_task_plan", "description": "Creates a task plan for the current task.", "parameters": { "type": "object", "properties": { "steps": { # <= this is the name of the arg "type": "object", "description": "List of steps to add to the task plan.", "properties": { "name": { "type": "str", "description": "Name of the step.", }, "key": { "type": "str", "description": "Unique identifier for the step.", }, "description": { "type": "str", "description": "An exhaustic description of what this step is trying to achieve and accomplish.", }, }, "required": ["name", "key", "description"], } }, "required": ["steps"], } } Specifically, the result of pydantic_model_to_json_schema(steps) (where `steps` is an instance of BaseModel) is: { "type": "object", "properties": { "name": { "type": "str", "description": "Name of the step." }, "key": { "type": "str", "description": "Unique identifier for the step." }, "description": { "type": "str", "description": "An exhaustic description of what this step is trying to achieve and accomplish." }, }, "required": ["name", "key", "description"], } """ schema = model.model_json_schema() def clean_property(prop: dict, full_schema: dict) -> dict: """Clean up a property schema to match desired format""" if "description" not in prop: raise ValueError(f"Property {prop} lacks a 'description' key") if "type" not in prop and "$ref" in prop: prop["type"] = "object" # Handle the case where the property is a $ref to another model if "$ref" in prop: # Resolve the reference to the nested model ref_schema = resolve_ref(prop["$ref"], full_schema) # Recursively clean the nested model return { "type": "object", **clean_schema(ref_schema, full_schema), "description": prop["description"], } # If it's a regular property with a direct type (e.g., string, number) return { "type": "string" if prop["type"] == "string" else prop["type"], "description": prop["description"], } def resolve_ref(ref: str, schema: dict) -> dict: """Resolve a $ref reference in the schema""" if not ref.startswith("#/$defs/"): raise ValueError(f"Unexpected reference format: {ref}") model_name = ref.split("/")[-1] if model_name not in schema.get("$defs", {}): raise ValueError(f"Reference {model_name} not found in schema definitions") return schema["$defs"][model_name] def clean_schema(schema_part: dict, full_schema: dict) -> dict: """Clean up a schema part, handling references and nested structures""" # Handle $ref if "$ref" in schema_part: schema_part = resolve_ref(schema_part["$ref"], full_schema) if "type" not in schema_part: raise ValueError(f"Schema part lacks a 'type' key: {schema_part}") # Handle array type if schema_part["type"] == "array": items_schema = schema_part["items"] if "$ref" in items_schema: items_schema = resolve_ref(items_schema["$ref"], full_schema) return {"type": "array", "items": clean_schema(items_schema, full_schema), "description": schema_part.get("description", "")} # Handle object type if schema_part["type"] == "object": if "properties" not in schema_part: raise ValueError(f"Object schema lacks 'properties' key: {schema_part}") properties = {} for name, prop in schema_part["properties"].items(): if "items" in prop: # Handle arrays if "description" not in prop: raise ValueError(f"Property {prop} lacks a 'description' key") properties[name] = { "type": "array", "items": clean_schema(prop["items"], full_schema), "description": prop["description"], } else: properties[name] = clean_property(prop, full_schema) pydantic_model_schema_dict = { "type": "object", "properties": properties, "required": schema_part.get("required", []), } if "description" in schema_part: pydantic_model_schema_dict["description"] = schema_part["description"] return pydantic_model_schema_dict # Handle primitive types return clean_property(schema_part) return clean_schema(schema_part=schema, full_schema=schema) def generate_schema(function, name: Optional[str] = None, description: Optional[str] = None) -> dict: # Get the signature of the function sig = inspect.signature(function) # Parse the docstring docstring = parse(function.__doc__) # Prepare the schema dictionary schema = { "name": function.__name__ if name is None else name, "description": docstring.short_description if description is None else description, "parameters": {"type": "object", "properties": {}, "required": []}, } # TODO: ensure that 'agent' keyword is reserved for `Agent` class for param in sig.parameters.values(): # Exclude 'self' parameter # TODO: eventually remove this (only applies to BASE_TOOLS) if param.name in ["self", "agent_state"]: # Add agent_manager to excluded continue # Assert that the parameter has a type annotation if param.annotation == inspect.Parameter.empty: raise TypeError(f"Parameter '{param.name}' in function '{function.__name__}' lacks a type annotation") # Find the parameter's description in the docstring param_doc = next((d for d in docstring.params if d.arg_name == param.name), None) # Assert that the parameter has a description if not param_doc or not param_doc.description: raise ValueError(f"Parameter '{param.name}' in function '{function.__name__}' lacks a description in the docstring") # If the parameter is a pydantic model, we need to unpack the Pydantic model type into a JSON schema object # if inspect.isclass(param.annotation) and issubclass(param.annotation, BaseModel): if ( (inspect.isclass(param.annotation) or inspect.isclass(get_origin(param.annotation) or param.annotation)) and not get_origin(param.annotation) and issubclass(param.annotation, BaseModel) ): # print("Generating schema for pydantic model:", param.annotation) # Extract the properties from the pydantic model schema["parameters"]["properties"][param.name] = pydantic_model_to_json_schema(param.annotation) schema["parameters"]["properties"][param.name]["description"] = param_doc.description # Otherwise, we convert the Python typing to JSON schema types # NOTE: important - if a dict or list, the internal type can be a Pydantic model itself # however in that else: # print("Generating schema for non-pydantic model:", param.annotation) # Grab the description for the parameter from the extended docstring # If it doesn't exist, we should raise an error param_doc = next((d for d in docstring.params if d.arg_name == param.name), None) if not param_doc: raise ValueError(f"Parameter '{param.name}' in function '{function.__name__}' lacks a description in the docstring") elif not isinstance(param_doc.description, str): raise ValueError( f"Parameter '{param.name}' in function '{function.__name__}' has a description in the docstring that is not a string (type: {type(param_doc.description)})" ) else: # If it's a string or a basic type, then all you need is: (1) type, (2) description # If it's a more complex type, then you also need either: # - for array, you need "items", each of which has "type" # - for a dict, you need "properties", which has keys which each have "type" if param.annotation != inspect.Parameter.empty: param_generated_schema = type_to_json_schema_type(param.annotation) else: # TODO why are we inferring here? param_generated_schema = {"type": "string"} # Add in the description param_generated_schema["description"] = param_doc.description # Add the schema to the function arg key schema["parameters"]["properties"][param.name] = param_generated_schema # If the parameter doesn't have a default value, it is required (so we need to add it to the required list) if param.default == inspect.Parameter.empty and not is_optional(param.annotation): schema["parameters"]["required"].append(param.name) # TODO what's going on here? # If the parameter is a list of strings we need to hard cast to "string" instead of `str` if get_origin(param.annotation) is list: if get_args(param.annotation)[0] is str: schema["parameters"]["properties"][param.name]["items"] = {"type": "string"} # TODO is this not duplicating the other append directly above? if param.annotation == inspect.Parameter.empty: schema["parameters"]["required"].append(param.name) # append the heartbeat # TODO: don't hard-code # TODO: if terminal, don't include this # if function.__name__ not in ["send_message"]: schema["parameters"]["properties"]["request_heartbeat"] = { "type": "boolean", "description": "Request an immediate heartbeat after function execution. Set to `True` if you want to send a follow-up message or run a follow-up function.", } schema["parameters"]["required"].append("request_heartbeat") return schema def generate_schema_from_args_schema_v2( args_schema: Type[BaseModel], name: Optional[str] = None, description: Optional[str] = None, append_heartbeat: bool = True ) -> Dict[str, Any]: properties = {} required = [] for field_name, field in args_schema.model_fields.items(): field_type_annotation = field.annotation properties[field_name] = type_to_json_schema_type(field_type_annotation) properties[field_name]["description"] = field.description if field.is_required(): required.append(field_name) function_call_json = { "name": name, "description": description, "parameters": {"type": "object", "properties": properties, "required": required}, } if append_heartbeat: function_call_json["parameters"]["properties"]["request_heartbeat"] = { "type": "boolean", "description": "Request an immediate heartbeat after function execution. Set to `True` if you want to send a follow-up message or run a follow-up function.", } function_call_json["parameters"]["required"].append("request_heartbeat") return function_call_json def generate_tool_schema_for_mcp( mcp_tool: MCPTool, append_heartbeat: bool = True, strict: bool = False, ) -> Dict[str, Any]: # MCP tool.inputSchema is a JSON schema # https://github.com/modelcontextprotocol/python-sdk/blob/775f87981300660ee957b63c2a14b448ab9c3675/src/mcp/types.py#L678 parameters_schema = mcp_tool.inputSchema name = mcp_tool.name description = mcp_tool.description assert "type" in parameters_schema assert "required" in parameters_schema assert "properties" in parameters_schema # Add the optional heartbeat parameter if append_heartbeat: parameters_schema["properties"]["request_heartbeat"] = { "type": "boolean", "description": "Request an immediate heartbeat after function execution. Set to `True` if you want to send a follow-up message or run a follow-up function.", } parameters_schema["required"].append("request_heartbeat") # Return the final schema if strict: # https://platform.openai.com/docs/guides/function-calling#strict-mode # Add additionalProperties: False parameters_schema["additionalProperties"] = False return { "strict": True, # NOTE "name": name, "description": description, "parameters": parameters_schema, } else: return { "name": name, "description": description, "parameters": parameters_schema, } def generate_tool_schema_for_composio( parameters_model: ActionParametersModel, name: str, description: str, append_heartbeat: bool = True, strict: bool = False, ) -> Dict[str, Any]: properties_json = {} required_fields = parameters_model.required or [] # Extract properties from the ActionParametersModel for field_name, field_props in parameters_model.properties.items(): # Initialize the property structure property_schema = { "type": field_props["type"], "description": field_props.get("description", ""), } # Handle optional default values if "default" in field_props: property_schema["default"] = field_props["default"] # Handle enumerations if "enum" in field_props: property_schema["enum"] = field_props["enum"] # Handle array item types if field_props["type"] == "array" and "items" in field_props: property_schema["items"] = field_props["items"] # Add the property to the schema properties_json[field_name] = property_schema # Add the optional heartbeat parameter if append_heartbeat: properties_json["request_heartbeat"] = { "type": "boolean", "description": "Request an immediate heartbeat after function execution. Set to `True` if you want to send a follow-up message or run a follow-up function.", } required_fields.append("request_heartbeat") # Return the final schema if strict: # https://platform.openai.com/docs/guides/function-calling#strict-mode return { "name": name, "description": description, "strict": True, # NOTE "parameters": { "type": "object", "properties": properties_json, "additionalProperties": False, # NOTE "required": required_fields, }, } else: return { "name": name, "description": description, "parameters": { "type": "object", "properties": properties_json, "required": required_fields, }, }