import uuid from typing import TYPE_CHECKING, Dict, List, Optional from sqlalchemy import JSON, ForeignKey, String from sqlalchemy.orm import Mapped, mapped_column, relationship from letta.orm.sqlalchemy_base import SqlalchemyBase from letta.schemas.step import Step as PydanticStep if TYPE_CHECKING: from letta.orm.job import Job from letta.orm.provider import Provider class Step(SqlalchemyBase): """Tracks all metadata for agent step.""" __tablename__ = "steps" __pydantic_model__ = PydanticStep id: Mapped[str] = mapped_column(String, primary_key=True, default=lambda: f"step-{uuid.uuid4()}") origin: Mapped[Optional[str]] = mapped_column(nullable=True, doc="The surface that this agent step was initiated from.") organization_id: Mapped[str] = mapped_column( ForeignKey("organizations.id", ondelete="RESTRICT"), nullable=True, doc="The unique identifier of the organization that this step ran for", ) provider_id: Mapped[Optional[str]] = mapped_column( ForeignKey("providers.id", ondelete="RESTRICT"), nullable=True, doc="The unique identifier of the provider that was configured for this step", ) job_id: Mapped[Optional[str]] = mapped_column( ForeignKey("jobs.id", ondelete="SET NULL"), nullable=True, doc="The unique identified of the job run that triggered this step" ) agent_id: Mapped[Optional[str]] = mapped_column(None, nullable=True, doc="The name of the model used for this step.") provider_name: Mapped[Optional[str]] = mapped_column(None, nullable=True, doc="The name of the provider used for this step.") model: Mapped[Optional[str]] = mapped_column(None, nullable=True, doc="The name of the model used for this step.") model_endpoint: Mapped[Optional[str]] = mapped_column(None, nullable=True, doc="The model endpoint url used for this step.") context_window_limit: Mapped[Optional[int]] = mapped_column( None, nullable=True, doc="The context window limit configured for this step." ) completion_tokens: Mapped[int] = mapped_column(default=0, doc="Number of tokens generated by the agent") prompt_tokens: Mapped[int] = mapped_column(default=0, doc="Number of tokens in the prompt") total_tokens: Mapped[int] = mapped_column(default=0, doc="Total number of tokens processed by the agent") completion_tokens_details: Mapped[Optional[Dict]] = mapped_column(JSON, nullable=True, doc="metadata for the agent.") tags: Mapped[Optional[List]] = mapped_column(JSON, doc="Metadata tags.") tid: Mapped[Optional[str]] = mapped_column(None, nullable=True, doc="Transaction ID that processed the step.") trace_id: Mapped[Optional[str]] = mapped_column(None, nullable=True, doc="The trace id of the agent step.") # Relationships (foreign keys) organization: Mapped[Optional["Organization"]] = relationship("Organization") provider: Mapped[Optional["Provider"]] = relationship("Provider") job: Mapped[Optional["Job"]] = relationship("Job", back_populates="steps") # Relationships (backrefs) messages: Mapped[List["Message"]] = relationship("Message", back_populates="step", cascade="save-update", lazy="noload")