from datetime import datetime import asyncio import csv import difflib import demjson3 as demjson import numpy as np import json import pytz import os import faiss import tiktoken import glob import sqlite3 import fitz from tqdm import tqdm import typer from memgpt.openai_tools import async_get_embedding_with_backoff from memgpt.constants import MEMGPT_DIR from llama_index import set_global_service_context, ServiceContext, VectorStoreIndex, load_index_from_storage, StorageContext from llama_index.embeddings import OpenAIEmbedding def count_tokens(s: str, model: str = "gpt-4") -> int: encoding = tiktoken.encoding_for_model(model) return len(encoding.encode(s)) # DEBUG = True DEBUG = False def printd(*args, **kwargs): if DEBUG: print(*args, **kwargs) def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) def united_diff(str1, str2): lines1 = str1.splitlines(True) lines2 = str2.splitlines(True) diff = difflib.unified_diff(lines1, lines2) return "".join(diff) def get_local_time_military(): # Get the current time in UTC current_time_utc = datetime.now(pytz.utc) # Convert to San Francisco's time zone (PST/PDT) sf_time_zone = pytz.timezone("America/Los_Angeles") local_time = current_time_utc.astimezone(sf_time_zone) # You may format it as you desire formatted_time = local_time.strftime("%Y-%m-%d %H:%M:%S %Z%z") return formatted_time def get_local_time(): # Get the current time in UTC current_time_utc = datetime.now(pytz.utc) # Convert to San Francisco's time zone (PST/PDT) sf_time_zone = pytz.timezone("America/Los_Angeles") local_time = current_time_utc.astimezone(sf_time_zone) # You may format it as you desire, including AM/PM formatted_time = local_time.strftime("%Y-%m-%d %I:%M:%S %p %Z%z") return formatted_time def parse_json(string): result = None try: result = json.loads(string) return result except Exception as e: print(f"Error parsing json with json package: {e}") try: result = demjson.decode(string) return result except demjson.JSONDecodeError as e: print(f"Error parsing json with demjson package: {e}") raise e def prepare_archival_index(folder): index_file = os.path.join(folder, "all_docs.index") index = faiss.read_index(index_file) archival_database_file = os.path.join(folder, "all_docs.jsonl") archival_database = [] with open(archival_database_file, "rt") as f: all_data = [json.loads(line) for line in f] for doc in all_data: total = len(doc) for i, passage in enumerate(doc): archival_database.append( { "content": f"[Title: {passage['title']}, {i}/{total}] {passage['text']}", "timestamp": get_local_time(), } ) return index, archival_database def read_in_chunks(file_object, chunk_size): while True: data = file_object.read(chunk_size) if not data: break yield data def read_pdf_in_chunks(file, chunk_size): doc = fitz.open(file) for page in doc: text = page.get_text() yield text def read_in_rows_csv(file_object, chunk_size): csvreader = csv.reader(file_object) header = next(csvreader) for row in csvreader: next_row_terms = [] for h, v in zip(header, row): next_row_terms.append(f"{h}={v}") next_row_str = ", ".join(next_row_terms) yield next_row_str def prepare_archival_index_from_files(glob_pattern, tkns_per_chunk=300, model="gpt-4"): encoding = tiktoken.encoding_for_model(model) files = glob.glob(glob_pattern) return chunk_files(files, tkns_per_chunk, model) def total_bytes(pattern): total = 0 for filename in glob.glob(pattern): if os.path.isfile(filename): # ensure it's a file and not a directory total += os.path.getsize(filename) return total def chunk_file(file, tkns_per_chunk=300, model="gpt-4"): encoding = tiktoken.encoding_for_model(model) with open(file, "r") as f: if file.endswith(".pdf"): lines = [l for l in read_pdf_in_chunks(file, tkns_per_chunk * 8)] if len(lines) == 0: print(f"Warning: {file} did not have any extractable text.") elif file.endswith(".csv"): lines = [l for l in read_in_rows_csv(f, tkns_per_chunk * 8)] else: lines = [l for l in read_in_chunks(f, tkns_per_chunk * 4)] curr_chunk = [] curr_token_ct = 0 for i, line in enumerate(lines): line = line.rstrip() line = line.lstrip() line += "\n" try: line_token_ct = len(encoding.encode(line)) except Exception as e: line_token_ct = len(line.split(" ")) / 0.75 print( f"Could not encode line {i}, estimating it to be {line_token_ct} tokens" ) print(e) if line_token_ct > tkns_per_chunk: if len(curr_chunk) > 0: yield "".join(curr_chunk) curr_chunk = [] curr_token_ct = 0 yield line[:3200] continue curr_token_ct += line_token_ct curr_chunk.append(line) if curr_token_ct > tkns_per_chunk: yield "".join(curr_chunk) curr_chunk = [] curr_token_ct = 0 if len(curr_chunk) > 0: yield "".join(curr_chunk) def chunk_files(files, tkns_per_chunk=300, model="gpt-4"): archival_database = [] for file in files: timestamp = os.path.getmtime(file) formatted_time = datetime.fromtimestamp(timestamp).strftime( "%Y-%m-%d %I:%M:%S %p %Z%z" ) file_stem = file.split("/")[-1] chunks = [c for c in chunk_file(file, tkns_per_chunk, model)] for i, chunk in enumerate(chunks): archival_database.append( { "content": f"[File: {file_stem} Part {i}/{len(chunks)}] {chunk}", "timestamp": formatted_time, } ) return archival_database def chunk_files_for_jsonl(files, tkns_per_chunk=300, model="gpt-4"): ret = [] for file in files: file_stem = file.split("/")[-1] curr_file = [] for chunk in chunk_file(file, tkns_per_chunk, model): curr_file.append( { "title": file_stem, "text": chunk, } ) ret.append(curr_file) return ret async def process_chunk(i, chunk, model): try: return i, await async_get_embedding_with_backoff(chunk["content"], model=model) except Exception as e: print(chunk) raise e async def process_concurrently(archival_database, model, concurrency=10): # Create a semaphore to limit the number of concurrent tasks semaphore = asyncio.Semaphore(concurrency) async def bounded_process_chunk(i, chunk): async with semaphore: return await process_chunk(i, chunk, model) # Create a list of tasks for chunks embedding_data = [0 for _ in archival_database] tasks = [ bounded_process_chunk(i, chunk) for i, chunk in enumerate(archival_database) ] for future in tqdm( asyncio.as_completed(tasks), total=len(archival_database), desc="Processing file chunks", ): i, result = await future embedding_data[i] = result return embedding_data async def prepare_archival_index_from_files_compute_embeddings( glob_pattern, tkns_per_chunk=300, model="gpt-4", embeddings_model="text-embedding-ada-002", ): files = sorted(glob.glob(glob_pattern)) save_dir = os.path.join( MEMGPT_DIR, "archival_index_from_files_" + get_local_time().replace(" ", "_").replace(":", "_"), ) os.makedirs(save_dir, exist_ok=True) total_tokens = total_bytes(glob_pattern) / 3 price_estimate = total_tokens / 1000 * 0.0001 confirm = input( f"Computing embeddings over {len(files)} files. This will cost ~${price_estimate:.2f}. Continue? [y/n] " ) if confirm != "y": raise Exception("embeddings were not computed") # chunk the files, make embeddings archival_database = chunk_files(files, tkns_per_chunk, model) embedding_data = await process_concurrently(archival_database, embeddings_model) embeddings_file = os.path.join(save_dir, "embeddings.json") with open(embeddings_file, "w") as f: print(f"Saving embeddings to {embeddings_file}") json.dump(embedding_data, f) # make all_text.json archival_storage_file = os.path.join(save_dir, "all_docs.jsonl") chunks_by_file = chunk_files_for_jsonl(files, tkns_per_chunk, model) with open(archival_storage_file, "w") as f: print( f"Saving archival storage with preloaded files to {archival_storage_file}" ) for c in chunks_by_file: json.dump(c, f) f.write("\n") # make the faiss index index = faiss.IndexFlatL2(1536) data = np.array(embedding_data).astype("float32") try: index.add(data) except Exception as e: print(data) raise e index_file = os.path.join(save_dir, "all_docs.index") print(f"Saving faiss index {index_file}") faiss.write_index(index, index_file) return save_dir def read_database_as_list(database_name): result_list = [] try: conn = sqlite3.connect(database_name) cursor = conn.cursor() cursor.execute("SELECT name FROM sqlite_master WHERE type='table';") table_names = cursor.fetchall() for table_name in table_names: cursor.execute(f"PRAGMA table_info({table_name[0]});") schema_rows = cursor.fetchall() columns = [row[1] for row in schema_rows] cursor.execute(f"SELECT * FROM {table_name[0]};") rows = cursor.fetchall() result_list.append(f"Table: {table_name[0]}") # Add table name to the list schema_row = "\t".join(columns) result_list.append(schema_row) for row in rows: data_row = "\t".join(map(str, row)) result_list.append(data_row) conn.close() except sqlite3.Error as e: result_list.append(f"Error reading database: {str(e)}") except Exception as e: result_list.append(f"Error: {str(e)}") return result_list def estimate_openai_cost(docs): """ Estimate OpenAI embedding cost :param docs: Documents to be embedded :type docs: List[Document] :return: Estimated cost :rtype: float """ from llama_index import MockEmbedding from llama_index.callbacks import CallbackManager, TokenCountingHandler import tiktoken embed_model = MockEmbedding(embed_dim=1536) token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode ) callback_manager = CallbackManager([token_counter]) set_global_service_context( ServiceContext.from_defaults( embed_model=embed_model, callback_manager=callback_manager ) ) index = VectorStoreIndex.from_documents(docs) # estimate cost cost = 0.0001 * token_counter.total_embedding_token_count / 1000 token_counter.reset_counts() return cost def get_index(name, docs): """ Index documents :param docs: Documents to be embedded :type docs: List[Document] """ # check if directory exists dir = f"{MEMGPT_DIR}/archival/{name}" if os.path.exists(dir): confirm = typer.confirm(typer.style(f"Index with name {name} already exists -- re-index?", fg="yellow"), default=False) if not confirm: # return existing index storage_context = StorageContext.from_defaults(persist_dir=dir) return load_index_from_storage(storage_context) # TODO: support configurable embeddings # TODO: read from config how to index (open ai vs. local): then embed_mode="local" estimated_cost = estimate_openai_cost(docs) # TODO: prettier cost formatting confirm = typer.confirm(typer.style(f"Open AI embedding cost will be approximately ${estimated_cost} - continue?", fg="yellow"), default=True) if not confirm: typer.secho("Aborting.", fg="red") exit() embed_model = OpenAIEmbedding() service_context = ServiceContext.from_defaults(embed_model=embed_model, chunk_size = 300) set_global_service_context(service_context) # index documents index = VectorStoreIndex.from_documents(docs) return index def save_index(index, name): """ Save index to a specificed name in ~/.memgpt :param index: Index to save :type index: VectorStoreIndex :param name: Name of index :type name: str """ # save # TODO: load directory from config # TODO: save to vectordb/local depending on config dir = f"{MEMGPT_DIR}/archival/{name}" ## Avoid overwriting ## check if directory exists #if os.path.exists(dir): # confirm = typer.confirm(typer.style(f"Index with name {name} already exists -- overwrite?", fg="red"), default=False) # if not confirm: # typer.secho("Aborting.", fg="red") # exit() # create directory, even if it already exists os.makedirs(dir, exist_ok=True) index.storage_context.persist(dir) print(dir)