import json import re from typing import Dict, List, Optional, Union import anthropic from anthropic import AsyncStream from anthropic.types.beta import BetaMessage as AnthropicMessage from anthropic.types.beta import BetaRawMessageStreamEvent from anthropic.types.beta.message_create_params import MessageCreateParamsNonStreaming from anthropic.types.beta.messages import BetaMessageBatch from anthropic.types.beta.messages.batch_create_params import Request from letta.errors import ( ContextWindowExceededError, ErrorCode, LLMAuthenticationError, LLMBadRequestError, LLMConnectionError, LLMNotFoundError, LLMPermissionDeniedError, LLMRateLimitError, LLMServerError, LLMUnprocessableEntityError, ) from letta.helpers.datetime_helpers import get_utc_time_int from letta.llm_api.helpers import add_inner_thoughts_to_functions, unpack_all_inner_thoughts_from_kwargs from letta.llm_api.llm_client_base import LLMClientBase from letta.local_llm.constants import INNER_THOUGHTS_KWARG, INNER_THOUGHTS_KWARG_DESCRIPTION from letta.log import get_logger from letta.schemas.llm_config import LLMConfig from letta.schemas.message import Message as PydanticMessage from letta.schemas.openai.chat_completion_request import Tool from letta.schemas.openai.chat_completion_response import ChatCompletionResponse, Choice, FunctionCall from letta.schemas.openai.chat_completion_response import Message as ChoiceMessage from letta.schemas.openai.chat_completion_response import ToolCall, UsageStatistics from letta.services.provider_manager import ProviderManager from letta.tracing import trace_method DUMMY_FIRST_USER_MESSAGE = "User initializing bootup sequence." logger = get_logger(__name__) class AnthropicClient(LLMClientBase): def request(self, request_data: dict) -> dict: client = self._get_anthropic_client(async_client=False) response = client.beta.messages.create(**request_data, betas=["tools-2024-04-04"]) return response.model_dump() async def request_async(self, request_data: dict) -> dict: client = self._get_anthropic_client(async_client=True) response = await client.beta.messages.create(**request_data, betas=["tools-2024-04-04"]) return response.model_dump() @trace_method async def stream_async(self, request_data: dict) -> AsyncStream[BetaRawMessageStreamEvent]: client = self._get_anthropic_client(async_client=True) request_data["stream"] = True return await client.beta.messages.create(**request_data, betas=["tools-2024-04-04"]) @trace_method async def send_llm_batch_request_async( self, agent_messages_mapping: Dict[str, List[PydanticMessage]], agent_tools_mapping: Dict[str, List[dict]], agent_llm_config_mapping: Dict[str, LLMConfig], ) -> BetaMessageBatch: """ Sends a batch request to the Anthropic API using the provided agent messages and tools mappings. Args: agent_messages_mapping: A dict mapping agent_id to their list of PydanticMessages. agent_tools_mapping: A dict mapping agent_id to their list of tool dicts. agent_llm_config_mapping: A dict mapping agent_id to their LLM config Returns: BetaMessageBatch: The batch response from the Anthropic API. Raises: ValueError: If the sets of agent_ids in the two mappings do not match. Exception: Transformed errors from the underlying API call. """ # Validate that both mappings use the same set of agent_ids. if set(agent_messages_mapping.keys()) != set(agent_tools_mapping.keys()): raise ValueError("Agent mappings for messages and tools must use the same agent_ids.") try: requests = { agent_id: self.build_request_data( messages=agent_messages_mapping[agent_id], llm_config=agent_llm_config_mapping[agent_id], tools=agent_tools_mapping[agent_id], ) for agent_id in agent_messages_mapping } client = self._get_anthropic_client(async_client=True) anthropic_requests = [ Request(custom_id=agent_id, params=MessageCreateParamsNonStreaming(**params)) for agent_id, params in requests.items() ] batch_response = await client.beta.messages.batches.create(requests=anthropic_requests) return batch_response except Exception as e: # Enhance logging here if additional context is needed logger.error("Error during send_llm_batch_request_async.", exc_info=True) raise self.handle_llm_error(e) @trace_method def _get_anthropic_client(self, async_client: bool = False) -> Union[anthropic.AsyncAnthropic, anthropic.Anthropic]: override_key = ProviderManager().get_anthropic_override_key() if async_client: return anthropic.AsyncAnthropic(api_key=override_key) if override_key else anthropic.AsyncAnthropic() return anthropic.Anthropic(api_key=override_key) if override_key else anthropic.Anthropic() @trace_method def build_request_data( self, messages: List[PydanticMessage], llm_config: LLMConfig, tools: Optional[List[dict]] = None, force_tool_call: Optional[str] = None, ) -> dict: # TODO: This needs to get cleaned up. The logic here is pretty confusing. # TODO: I really want to get rid of prefixing, it's a recipe for disaster code maintenance wise prefix_fill = True if not self.use_tool_naming: raise NotImplementedError("Only tool calling supported on Anthropic API requests") if not llm_config.max_tokens: raise ValueError("Max tokens must be set for anthropic") data = { "model": llm_config.model, "max_tokens": llm_config.max_tokens, "temperature": llm_config.temperature, } # Extended Thinking if llm_config.enable_reasoner: data["thinking"] = { "type": "enabled", "budget_tokens": llm_config.max_reasoning_tokens, } # `temperature` may only be set to 1 when thinking is enabled. Please consult our documentation at https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking#important-considerations-when-using-extended-thinking' data["temperature"] = 1.0 # Silently disable prefix_fill for now prefix_fill = False # Tools # For an overview on tool choice: # https://docs.anthropic.com/en/docs/build-with-claude/tool-use/overview if not tools: # Special case for summarization path tools_for_request = None tool_choice = None elif llm_config.enable_reasoner: # NOTE: reasoning models currently do not allow for `any` tool_choice = {"type": "auto", "disable_parallel_tool_use": True} tools_for_request = [Tool(function=f) for f in tools] elif force_tool_call is not None: tool_choice = {"type": "tool", "name": force_tool_call} tools_for_request = [Tool(function=f) for f in tools if f["name"] == force_tool_call] # need to have this setting to be able to put inner thoughts in kwargs if not llm_config.put_inner_thoughts_in_kwargs: logger.warning( f"Force setting put_inner_thoughts_in_kwargs to True for Claude because there is a forced tool call: {force_tool_call}" ) llm_config.put_inner_thoughts_in_kwargs = True else: if llm_config.put_inner_thoughts_in_kwargs: # tool_choice_type other than "auto" only plays nice if thinking goes inside the tool calls tool_choice = {"type": "any", "disable_parallel_tool_use": True} else: tool_choice = {"type": "auto", "disable_parallel_tool_use": True} tools_for_request = [Tool(function=f) for f in tools] if tools is not None else None # Add tool choice if tool_choice: data["tool_choice"] = tool_choice # Add inner thoughts kwarg # TODO: Can probably make this more efficient if tools_for_request and len(tools_for_request) > 0 and llm_config.put_inner_thoughts_in_kwargs: tools_with_inner_thoughts = add_inner_thoughts_to_functions( functions=[t.function.model_dump() for t in tools_for_request], inner_thoughts_key=INNER_THOUGHTS_KWARG, inner_thoughts_description=INNER_THOUGHTS_KWARG_DESCRIPTION, ) tools_for_request = [Tool(function=f) for f in tools_with_inner_thoughts] if tools_for_request and len(tools_for_request) > 0: # TODO eventually enable parallel tool use data["tools"] = convert_tools_to_anthropic_format(tools_for_request) # Messages inner_thoughts_xml_tag = "thinking" # Move 'system' to the top level if messages[0].role != "system": raise RuntimeError(f"First message is not a system message, instead has role {messages[0].role}") data["system"] = messages[0].content if isinstance(messages[0].content, str) else messages[0].content[0].text data["messages"] = [ m.to_anthropic_dict( inner_thoughts_xml_tag=inner_thoughts_xml_tag, put_inner_thoughts_in_kwargs=bool(llm_config.put_inner_thoughts_in_kwargs), ) for m in messages[1:] ] # Ensure first message is user if data["messages"][0]["role"] != "user": data["messages"] = [{"role": "user", "content": DUMMY_FIRST_USER_MESSAGE}] + data["messages"] # Handle alternating messages data["messages"] = merge_tool_results_into_user_messages(data["messages"]) # Prefix fill # https://docs.anthropic.com/en/api/messages#body-messages # NOTE: cannot prefill with tools for opus: # Your API request included an `assistant` message in the final position, which would pre-fill the `assistant` response. When using tools with "claude-3-opus-20240229" if prefix_fill and not llm_config.put_inner_thoughts_in_kwargs and "opus" not in data["model"]: data["messages"].append( # Start the thinking process for the assistant {"role": "assistant", "content": f"<{inner_thoughts_xml_tag}>"}, ) return data def handle_llm_error(self, e: Exception) -> Exception: if isinstance(e, anthropic.APIConnectionError): logger.warning(f"[Anthropic] API connection error: {e.__cause__}") return LLMConnectionError( message=f"Failed to connect to Anthropic: {str(e)}", code=ErrorCode.INTERNAL_SERVER_ERROR, details={"cause": str(e.__cause__) if e.__cause__ else None}, ) if isinstance(e, anthropic.RateLimitError): logger.warning("[Anthropic] Rate limited (429). Consider backoff.") return LLMRateLimitError( message=f"Rate limited by Anthropic: {str(e)}", code=ErrorCode.RATE_LIMIT_EXCEEDED, ) if isinstance(e, anthropic.BadRequestError): logger.warning(f"[Anthropic] Bad request: {str(e)}") if "prompt is too long" in str(e).lower(): # If the context window is too large, we expect to receive: # 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'prompt is too long: 200758 tokens > 200000 maximum'}} return ContextWindowExceededError( message=f"Bad request to Anthropic (context window exceeded): {str(e)}", ) else: return LLMBadRequestError( message=f"Bad request to Anthropic: {str(e)}", code=ErrorCode.INTERNAL_SERVER_ERROR, ) if isinstance(e, anthropic.AuthenticationError): logger.warning(f"[Anthropic] Authentication error: {str(e)}") return LLMAuthenticationError( message=f"Authentication failed with Anthropic: {str(e)}", code=ErrorCode.INTERNAL_SERVER_ERROR, ) if isinstance(e, anthropic.PermissionDeniedError): logger.warning(f"[Anthropic] Permission denied: {str(e)}") return LLMPermissionDeniedError( message=f"Permission denied by Anthropic: {str(e)}", code=ErrorCode.INTERNAL_SERVER_ERROR, ) if isinstance(e, anthropic.NotFoundError): logger.warning(f"[Anthropic] Resource not found: {str(e)}") return LLMNotFoundError( message=f"Resource not found in Anthropic: {str(e)}", code=ErrorCode.INTERNAL_SERVER_ERROR, ) if isinstance(e, anthropic.UnprocessableEntityError): logger.warning(f"[Anthropic] Unprocessable entity: {str(e)}") return LLMUnprocessableEntityError( message=f"Invalid request content for Anthropic: {str(e)}", code=ErrorCode.INTERNAL_SERVER_ERROR, ) if isinstance(e, anthropic.APIStatusError): logger.warning(f"[Anthropic] API status error: {str(e)}") return LLMServerError( message=f"Anthropic API error: {str(e)}", code=ErrorCode.INTERNAL_SERVER_ERROR, details={ "status_code": e.status_code if hasattr(e, "status_code") else None, "response": str(e.response) if hasattr(e, "response") else None, }, ) return super().handle_llm_error(e) # TODO: Input messages doesn't get used here # TODO: Clean up this interface def convert_response_to_chat_completion( self, response_data: dict, input_messages: List[PydanticMessage], ) -> ChatCompletionResponse: """ Example response from Claude 3: response.json = { 'id': 'msg_01W1xg9hdRzbeN2CfZM7zD2w', 'type': 'message', 'role': 'assistant', 'content': [ { 'type': 'text', 'text': "Analyzing user login event. This is Chad's first interaction with me. I will adjust my personality and rapport accordingly." }, { 'type': 'tool_use', 'id': 'toolu_01Ka4AuCmfvxiidnBZuNfP1u', 'name': 'core_memory_append', 'input': { 'name': 'human', 'content': 'Chad is logging in for the first time. I will aim to build a warm and welcoming rapport.', 'request_heartbeat': True } } ], 'model': 'claude-3-haiku-20240307', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': { 'input_tokens': 3305, 'output_tokens': 141 } } """ response = AnthropicMessage(**response_data) prompt_tokens = response.usage.input_tokens completion_tokens = response.usage.output_tokens finish_reason = remap_finish_reason(str(response.stop_reason)) content = None reasoning_content = None reasoning_content_signature = None redacted_reasoning_content = None tool_calls = None if len(response.content) > 0: for content_part in response.content: if content_part.type == "text": content = strip_xml_tags(string=content_part.text, tag="thinking") if content_part.type == "tool_use": # hack for tool rules input = json.loads(json.dumps(content_part.input)) if "id" in input and input["id"].startswith("toolu_") and "function" in input: arguments = str(input["function"]["arguments"]) else: arguments = json.dumps(content_part.input, indent=2) tool_calls = [ ToolCall( id=content_part.id, type="function", function=FunctionCall( name=content_part.name, arguments=arguments, ), ) ] if content_part.type == "thinking": reasoning_content = content_part.thinking reasoning_content_signature = content_part.signature if content_part.type == "redacted_thinking": redacted_reasoning_content = content_part.data else: raise RuntimeError("Unexpected empty content in response") assert response.role == "assistant" choice = Choice( index=0, finish_reason=finish_reason, message=ChoiceMessage( role=response.role, content=content, reasoning_content=reasoning_content, reasoning_content_signature=reasoning_content_signature, redacted_reasoning_content=redacted_reasoning_content, tool_calls=tool_calls, ), ) chat_completion_response = ChatCompletionResponse( id=response.id, choices=[choice], created=get_utc_time_int(), model=response.model, usage=UsageStatistics( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ), ) if self.llm_config.put_inner_thoughts_in_kwargs: chat_completion_response = unpack_all_inner_thoughts_from_kwargs( response=chat_completion_response, inner_thoughts_key=INNER_THOUGHTS_KWARG ) return chat_completion_response def convert_tools_to_anthropic_format(tools: List[Tool]) -> List[dict]: """See: https://docs.anthropic.com/claude/docs/tool-use OpenAI style: "tools": [{ "type": "function", "function": { "name": "find_movies", "description": "find ....", "parameters": { "type": "object", "properties": { PARAM: { "type": PARAM_TYPE, # eg "string" "description": PARAM_DESCRIPTION, }, ... }, "required": List[str], } } } ] Anthropic style: "tools": [{ "name": "find_movies", "description": "find ....", "input_schema": { "type": "object", "properties": { PARAM: { "type": PARAM_TYPE, # eg "string" "description": PARAM_DESCRIPTION, }, ... }, "required": List[str], } } ] Two small differences: - 1 level less of nesting - "parameters" -> "input_schema" """ formatted_tools = [] for tool in tools: formatted_tool = { "name": tool.function.name, "description": tool.function.description, "input_schema": tool.function.parameters or {"type": "object", "properties": {}, "required": []}, } formatted_tools.append(formatted_tool) return formatted_tools def merge_tool_results_into_user_messages(messages: List[dict]): """Anthropic API doesn't allow role 'tool'->'user' sequences Example HTTP error: messages: roles must alternate between "user" and "assistant", but found multiple "user" roles in a row From: https://docs.anthropic.com/claude/docs/tool-use You may be familiar with other APIs that return tool use as separate from the model's primary output, or which use a special-purpose tool or function message role. In contrast, Anthropic's models and API are built around alternating user and assistant messages, where each message is an array of rich content blocks: text, image, tool_use, and tool_result. """ # TODO walk through the messages list # When a dict (dict_A) with 'role' == 'user' is followed by a dict with 'role' == 'user' (dict B), do the following # dict_A["content"] = dict_A["content"] + dict_B["content"] # The result should be a new merged_messages list that doesn't have any back-to-back dicts with 'role' == 'user' merged_messages = [] if not messages: return merged_messages # Start with the first message in the list current_message = messages[0] for next_message in messages[1:]: if current_message["role"] == "user" and next_message["role"] == "user": # Merge contents of the next user message into current one current_content = ( current_message["content"] if isinstance(current_message["content"], list) else [{"type": "text", "text": current_message["content"]}] ) next_content = ( next_message["content"] if isinstance(next_message["content"], list) else [{"type": "text", "text": next_message["content"]}] ) merged_content = current_content + next_content current_message["content"] = merged_content else: # Append the current message to result as it's complete merged_messages.append(current_message) # Move on to the next message current_message = next_message # Append the last processed message to the result merged_messages.append(current_message) return merged_messages def remap_finish_reason(stop_reason: str) -> str: """Remap Anthropic's 'stop_reason' to OpenAI 'finish_reason' OpenAI: 'stop', 'length', 'function_call', 'content_filter', null see: https://platform.openai.com/docs/guides/text-generation/chat-completions-api From: https://docs.anthropic.com/claude/reference/migrating-from-text-completions-to-messages#stop-reason Messages have a stop_reason of one of the following values: "end_turn": The conversational turn ended naturally. "stop_sequence": One of your specified custom stop sequences was generated. "max_tokens": (unchanged) """ if stop_reason == "end_turn": return "stop" elif stop_reason == "stop_sequence": return "stop" elif stop_reason == "max_tokens": return "length" elif stop_reason == "tool_use": return "function_call" else: raise ValueError(f"Unexpected stop_reason: {stop_reason}") def strip_xml_tags(string: str, tag: Optional[str]) -> str: if tag is None: return string # Construct the regular expression pattern to find the start and end tags tag_pattern = f"<{tag}.*?>|" # Use the regular expression to replace the tags with an empty string return re.sub(tag_pattern, "", string) def strip_xml_tags_streaming(string: str, tag: Optional[str]) -> str: if tag is None: return string # Handle common partial tag cases parts_to_remove = [ "<", # Leftover start bracket f"<{tag}", # Opening tag start f"", # Closing tag end f"{tag}>", # Opening tag end f"/{tag}", # Partial closing tag without > ">", # Leftover end bracket ] result = string for part in parts_to_remove: result = result.replace(part, "") return result