import builtins import os import shutil import uuid from typing import Annotated, Tuple, Optional from enum import Enum from typing import Annotated import questionary import typer from prettytable import PrettyTable from tqdm import tqdm from memgpt import utils from memgpt.agent_store.storage import StorageConnector, TableType from memgpt.config import MemGPTConfig from memgpt.constants import LLM_MAX_TOKENS from memgpt.constants import MEMGPT_DIR from memgpt.credentials import MemGPTCredentials, SUPPORTED_AUTH_TYPES from memgpt.data_types import User, LLMConfig, EmbeddingConfig from memgpt.llm_api_tools import openai_get_model_list, azure_openai_get_model_list, smart_urljoin from memgpt.local_llm.constants import DEFAULT_ENDPOINTS, DEFAULT_OLLAMA_MODEL, DEFAULT_WRAPPER_NAME from memgpt.local_llm.utils import get_available_wrappers from memgpt.llm_api_tools import openai_get_model_list, azure_openai_get_model_list, smart_urljoin from memgpt.server.utils import shorten_key_middle from memgpt.data_types import User, LLMConfig, EmbeddingConfig, Source from memgpt.metadata import MetadataStore from memgpt.server.utils import shorten_key_middle app = typer.Typer() def get_azure_credentials(): creds = dict( azure_key=os.getenv("AZURE_OPENAI_KEY"), azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), azure_version=os.getenv("AZURE_OPENAI_VERSION"), azure_deployment=os.getenv("AZURE_OPENAI_DEPLOYMENT"), azure_embedding_deployment=os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT"), ) # embedding endpoint and version default to non-embedding creds["azure_embedding_endpoint"] = os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT", creds["azure_endpoint"]) creds["azure_embedding_version"] = os.getenv("AZURE_OPENAI_EMBEDDING_VERSION", creds["azure_version"]) return creds def get_openai_credentials(): openai_key = os.getenv("OPENAI_API_KEY") return openai_key def configure_llm_endpoint(config: MemGPTConfig, credentials: MemGPTCredentials): # configure model endpoint model_endpoint_type, model_endpoint = None, None # get default default_model_endpoint_type = config.default_llm_config.model_endpoint_type if config.default_llm_config.model_endpoint_type is not None and config.default_llm_config.model_endpoint_type not in [ "openai", "azure", ]: # local model default_model_endpoint_type = "local" provider = questionary.select( "Select LLM inference provider:", choices=["openai", "azure", "local"], default=default_model_endpoint_type ).ask() if provider is None: raise KeyboardInterrupt # set: model_endpoint_type, model_endpoint if provider == "openai": # check for key if credentials.openai_key is None: # allow key to get pulled from env vars openai_api_key = os.getenv("OPENAI_API_KEY", None) # if we still can't find it, ask for it as input if openai_api_key is None: while openai_api_key is None or len(openai_api_key) == 0: # Ask for API key as input openai_api_key = questionary.password( "Enter your OpenAI API key (starts with 'sk-', see https://platform.openai.com/api-keys):" ).ask() if openai_api_key is None: raise KeyboardInterrupt credentials.openai_key = openai_api_key credentials.save() else: # Give the user an opportunity to overwrite the key openai_api_key = None default_input = ( shorten_key_middle(credentials.openai_key) if credentials.openai_key.startswith("sk-") else credentials.openai_key ) openai_api_key = questionary.password( "Enter your OpenAI API key (starts with 'sk-', see https://platform.openai.com/api-keys):", default=default_input, ).ask() if openai_api_key is None: raise KeyboardInterrupt # If the user modified it, use the new one if openai_api_key != default_input: credentials.openai_key = openai_api_key credentials.save() model_endpoint_type = "openai" model_endpoint = "https://api.openai.com/v1" model_endpoint = questionary.text("Override default endpoint:", default=model_endpoint).ask() if model_endpoint is None: raise KeyboardInterrupt provider = "openai" elif provider == "azure": # check for necessary vars azure_creds = get_azure_credentials() if not all([azure_creds["azure_key"], azure_creds["azure_endpoint"], azure_creds["azure_version"]]): raise ValueError( "Missing environment variables for Azure (see https://memgpt.readme.io/docs/endpoints#azure-openai). Please set then run `memgpt configure` again." ) else: credentials.azure_key = azure_creds["azure_key"] credentials.azure_endpoint = azure_creds["azure_endpoint"] credentials.azure_version = azure_creds["azure_version"] config.save() model_endpoint_type = "azure" model_endpoint = azure_creds["azure_endpoint"] else: # local models backend_options = ["webui", "webui-legacy", "llamacpp", "koboldcpp", "ollama", "lmstudio", "lmstudio-legacy", "vllm", "openai"] default_model_endpoint_type = None if config.default_llm_config.model_endpoint_type in backend_options: # set from previous config default_model_endpoint_type = config.default_llm_config.model_endpoint_type model_endpoint_type = questionary.select( "Select LLM backend (select 'openai' if you have an OpenAI compatible proxy):", backend_options, default=default_model_endpoint_type, ).ask() if model_endpoint_type is None: raise KeyboardInterrupt # set default endpoint # if OPENAI_API_BASE is set, assume that this is the IP+port the user wanted to use default_model_endpoint = os.getenv("OPENAI_API_BASE") # if OPENAI_API_BASE is not set, try to pull a default IP+port format from a hardcoded set if default_model_endpoint is None: if model_endpoint_type in DEFAULT_ENDPOINTS: default_model_endpoint = DEFAULT_ENDPOINTS[model_endpoint_type] model_endpoint = questionary.text("Enter default endpoint:", default=default_model_endpoint).ask() if model_endpoint is None: raise KeyboardInterrupt while not utils.is_valid_url(model_endpoint): typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW) model_endpoint = questionary.text("Enter default endpoint:", default=default_model_endpoint).ask() if model_endpoint is None: raise KeyboardInterrupt elif config.default_llm_config.model_endpoint: model_endpoint = questionary.text("Enter default endpoint:", default=config.default_llm_config.model_endpoint).ask() if model_endpoint is None: raise KeyboardInterrupt while not utils.is_valid_url(model_endpoint): typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW) model_endpoint = questionary.text("Enter default endpoint:", default=config.default_llm_config.model_endpoint).ask() if model_endpoint is None: raise KeyboardInterrupt else: # default_model_endpoint = None model_endpoint = None model_endpoint = questionary.text("Enter default endpoint:").ask() if model_endpoint is None: raise KeyboardInterrupt while not utils.is_valid_url(model_endpoint): typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW) model_endpoint = questionary.text("Enter default endpoint:").ask() if model_endpoint is None: raise KeyboardInterrupt else: model_endpoint = default_model_endpoint assert model_endpoint, f"Environment variable OPENAI_API_BASE must be set." return model_endpoint_type, model_endpoint def configure_model(config: MemGPTConfig, credentials: MemGPTCredentials, model_endpoint_type: str, model_endpoint: str): # set: model, model_wrapper model, model_wrapper = None, None if model_endpoint_type == "openai" or model_endpoint_type == "azure": # Get the model list from the openai / azure endpoint hardcoded_model_options = ["gpt-4", "gpt-4-32k", "gpt-4-1106-preview", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"] fetched_model_options = [] try: if model_endpoint_type == "openai": fetched_model_options_response = openai_get_model_list(url=model_endpoint, api_key=credentials.openai_key) elif model_endpoint_type == "azure": assert credentials.azure_version is not None, f"Missing azure_version" fetched_model_options_response = azure_openai_get_model_list( url=model_endpoint, api_key=credentials.azure_key, api_version=credentials.azure_version ) fetched_model_options = [obj["id"] for obj in fetched_model_options_response["data"] if obj["id"].startswith("gpt-")] except: # NOTE: if this fails, it means the user's key is probably bad typer.secho( f"Failed to get model list from {model_endpoint} - make sure your API key and endpoints are correct!", fg=typer.colors.RED ) # First ask if the user wants to see the full model list (some may be incompatible) see_all_option_str = "[see all options]" other_option_str = "[enter model name manually]" # Check if the model we have set already is even in the list (informs our default) valid_model = config.default_llm_config.model in hardcoded_model_options model = questionary.select( "Select default model (recommended: gpt-4):", choices=hardcoded_model_options + [see_all_option_str, other_option_str], default=config.default_llm_config.model if valid_model else hardcoded_model_options[0], ).ask() if model is None: raise KeyboardInterrupt # If the user asked for the full list, show it if model == see_all_option_str: typer.secho(f"Warning: not all models shown are guaranteed to work with MemGPT", fg=typer.colors.RED) model = questionary.select( "Select default model (recommended: gpt-4):", choices=fetched_model_options + [other_option_str], default=config.default_llm_config.model if valid_model else fetched_model_options[0], ).ask() if model is None: raise KeyboardInterrupt # Finally if the user asked to manually input, allow it if model == other_option_str: model = "" while len(model) == 0: model = questionary.text( "Enter custom model name:", ).ask() if model is None: raise KeyboardInterrupt else: # local models # ollama also needs model type if model_endpoint_type == "ollama": default_model = ( config.default_llm_config.model if config.default_llm_config.model and config.default_llm_config.model_endpoint_type == "ollama" else DEFAULT_OLLAMA_MODEL ) model = questionary.text( "Enter default model name (required for Ollama, see: https://memgpt.readme.io/docs/ollama):", default=default_model, ).ask() if model is None: raise KeyboardInterrupt model = None if len(model) == 0 else model default_model = ( config.default_llm_config.model if config.default_llm_config.model and config.default_llm_config.model_endpoint_type == "vllm" else "" ) # vllm needs huggingface model tag if model_endpoint_type == "vllm": try: # Don't filter model list for vLLM since model list is likely much smaller than OpenAI/Azure endpoint # + probably has custom model names model_options = openai_get_model_list(url=smart_urljoin(model_endpoint, "v1"), api_key=None) model_options = [obj["id"] for obj in model_options["data"]] except: print(f"Failed to get model list from {model_endpoint}, using defaults") model_options = None # If we got model options from vLLM endpoint, allow selection + custom input if model_options is not None: other_option_str = "other (enter name)" valid_model = config.default_llm_config.model in model_options model_options.append(other_option_str) model = questionary.select( "Select default model:", choices=model_options, default=config.default_llm_config.model if valid_model else model_options[0], ).ask() if model is None: raise KeyboardInterrupt # If we got custom input, ask for raw input if model == other_option_str: model = questionary.text( "Enter HuggingFace model tag (e.g. ehartford/dolphin-2.2.1-mistral-7b):", default=default_model, ).ask() if model is None: raise KeyboardInterrupt # TODO allow empty string for input? model = None if len(model) == 0 else model else: model = questionary.text( "Enter HuggingFace model tag (e.g. ehartford/dolphin-2.2.1-mistral-7b):", default=default_model, ).ask() if model is None: raise KeyboardInterrupt model = None if len(model) == 0 else model # model wrapper available_model_wrappers = builtins.list(get_available_wrappers().keys()) model_wrapper = questionary.select( f"Select default model wrapper (recommended: {DEFAULT_WRAPPER_NAME}):", choices=available_model_wrappers, default=DEFAULT_WRAPPER_NAME, ).ask() if model_wrapper is None: raise KeyboardInterrupt # ask about local auth use_local_auth = questionary.confirm( "Is your LLM endpoint authenticated? (default no)", default=False, ).ask() if use_local_auth is None: raise KeyboardInterrupt if use_local_auth: local_auth_type = questionary.select( "What HTTP authentication method does your endpoint require?", choices=SUPPORTED_AUTH_TYPES, default=SUPPORTED_AUTH_TYPES[0], ).ask() if local_auth_type is None: raise KeyboardInterrupt local_auth_key = questionary.password( "Enter your authentication key:", ).ask() if local_auth_key is None: raise KeyboardInterrupt # credentials = MemGPTCredentials.load() credentials.openllm_auth_type = local_auth_type credentials.openllm_key = local_auth_key credentials.save() # set: context_window if str(model) not in LLM_MAX_TOKENS: # Ask the user to specify the context length context_length_options = [ str(2**12), # 4096 str(2**13), # 8192 str(2**14), # 16384 str(2**15), # 32768 str(2**18), # 262144 "custom", # enter yourself ] context_window_input = questionary.select( "Select your model's context window (for Mistral 7B models, this is probably 8k / 8192):", choices=context_length_options, default=str(LLM_MAX_TOKENS["DEFAULT"]), ).ask() if context_window_input is None: raise KeyboardInterrupt # If custom, ask for input if context_window_input == "custom": while True: context_window_input = questionary.text("Enter context window (e.g. 8192)").ask() if context_window_input is None: raise KeyboardInterrupt try: context_window = int(context_window_input) break except ValueError: print(f"Context window must be a valid integer") else: context_window = int(context_window_input) else: # Pull the context length from the models context_window = int(LLM_MAX_TOKENS[str(model)]) return model, model_wrapper, context_window def configure_embedding_endpoint(config: MemGPTConfig, credentials: MemGPTCredentials): # configure embedding endpoint default_embedding_endpoint_type = config.default_embedding_config.embedding_endpoint_type embedding_endpoint_type, embedding_endpoint, embedding_dim, embedding_model = None, None, None, None embedding_provider = questionary.select( "Select embedding provider:", choices=["openai", "azure", "hugging-face", "local"], default=default_embedding_endpoint_type ).ask() if embedding_provider is None: raise KeyboardInterrupt if embedding_provider == "openai": # check for key if credentials.openai_key is None: # allow key to get pulled from env vars openai_api_key = os.getenv("OPENAI_API_KEY", None) if openai_api_key is None: # if we still can't find it, ask for it as input while openai_api_key is None or len(openai_api_key) == 0: # Ask for API key as input openai_api_key = questionary.password( "Enter your OpenAI API key (starts with 'sk-', see https://platform.openai.com/api-keys):" ).ask() if openai_api_key is None: raise KeyboardInterrupt credentials.openai_key = openai_api_key credentials.save() embedding_endpoint_type = "openai" embedding_endpoint = "https://api.openai.com/v1" embedding_dim = 1536 embedding_model = "text-embedding-ada-002" elif embedding_provider == "azure": # check for necessary vars azure_creds = get_azure_credentials() if not all([azure_creds["azure_key"], azure_creds["azure_embedding_endpoint"], azure_creds["azure_embedding_version"]]): raise ValueError( "Missing environment variables for Azure (see https://memgpt.readme.io/docs/endpoints#azure-openai). Please set then run `memgpt configure` again." ) # TODO we need to write these out to the config once we use them if we plan to ping for embedding lists with them embedding_endpoint_type = "azure" embedding_endpoint = azure_creds["azure_embedding_endpoint"] embedding_dim = 1536 embedding_model = "text-embedding-ada-002" elif embedding_provider == "hugging-face": # configure hugging face embedding endpoint (https://github.com/huggingface/text-embeddings-inference) # supports custom model/endpoints embedding_endpoint_type = "hugging-face" embedding_endpoint = None # get endpoint embedding_endpoint = questionary.text("Enter default endpoint:").ask() if embedding_endpoint is None: raise KeyboardInterrupt while not utils.is_valid_url(embedding_endpoint): typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW) embedding_endpoint = questionary.text("Enter default endpoint:").ask() # get model type default_embedding_model = ( config.default_embedding_config.embedding_model if config.default_embedding_config.embedding_model else "BAAI/bge-large-en-v1.5" ) embedding_model = questionary.text( "Enter HuggingFace model tag (e.g. BAAI/bge-large-en-v1.5):", default=default_embedding_model, ).ask() if embedding_model is None: raise KeyboardInterrupt # get model dimentions default_embedding_dim = config.default_embedding_config.embedding_dim if config.default_embedding_config.embedding_dim else "1024" embedding_dim = questionary.text("Enter embedding model dimentions (e.g. 1024):", default=str(default_embedding_dim)).ask() if embedding_dim is None: raise KeyboardInterrupt try: embedding_dim = int(embedding_dim) except Exception as e: raise ValueError(f"Failed to cast {embedding_dim} to integer.") else: # local models embedding_endpoint_type = "local" embedding_endpoint = None embedding_dim = 384 return embedding_endpoint_type, embedding_endpoint, embedding_dim, embedding_model def configure_cli(config: MemGPTConfig, credentials: MemGPTCredentials): # set: preset, default_persona, default_human, default_agent`` from memgpt.presets.presets import preset_options # preset default_preset = config.preset if config.preset and config.preset in preset_options else None preset = questionary.select("Select default preset:", preset_options, default=default_preset).ask() if preset is None: raise KeyboardInterrupt # persona personas = [os.path.basename(f).replace(".txt", "") for f in utils.list_persona_files()] default_persona = config.persona if config.persona and config.persona in personas else None persona = questionary.select("Select default persona:", personas, default=default_persona).ask() if persona is None: raise KeyboardInterrupt # human humans = [os.path.basename(f).replace(".txt", "") for f in utils.list_human_files()] default_human = config.human if config.human and config.human in humans else None human = questionary.select("Select default human:", humans, default=default_human).ask() if human is None: raise KeyboardInterrupt # TODO: figure out if we should set a default agent or not agent = None return preset, persona, human, agent def configure_archival_storage(config: MemGPTConfig, credentials: MemGPTCredentials): # Configure archival storage backend archival_storage_options = ["postgres", "chroma"] archival_storage_type = questionary.select( "Select storage backend for archival data:", archival_storage_options, default=config.archival_storage_type ).ask() if archival_storage_type is None: raise KeyboardInterrupt archival_storage_uri, archival_storage_path = config.archival_storage_uri, config.archival_storage_path # configure postgres if archival_storage_type == "postgres": archival_storage_uri = questionary.text( "Enter postgres connection string (e.g. postgresql+pg8000://{user}:{password}@{ip}:5432/{database}):", default=config.archival_storage_uri if config.archival_storage_uri else "", ).ask() if archival_storage_uri is None: raise KeyboardInterrupt # TODO: add back ## configure lancedb # if archival_storage_type == "lancedb": # archival_storage_uri = questionary.text( # "Enter lanncedb connection string (e.g. ./.lancedb", # default=config.archival_storage_uri if config.archival_storage_uri else "./.lancedb", # ).ask() # configure chroma if archival_storage_type == "chroma": chroma_type = questionary.select("Select chroma backend:", ["http", "persistent"], default="persistent").ask() if chroma_type is None: raise KeyboardInterrupt if chroma_type == "http": archival_storage_uri = questionary.text("Enter chroma ip (e.g. localhost:8000):", default="localhost:8000").ask() if archival_storage_uri is None: raise KeyboardInterrupt if chroma_type == "persistent": archival_storage_path = os.path.join(MEMGPT_DIR, "chroma") return archival_storage_type, archival_storage_uri, archival_storage_path # TODO: allow configuring embedding model def configure_recall_storage(config: MemGPTConfig, credentials: MemGPTCredentials): # Configure recall storage backend recall_storage_options = ["sqlite", "postgres"] recall_storage_type = questionary.select( "Select storage backend for recall data:", recall_storage_options, default=config.recall_storage_type ).ask() if recall_storage_type is None: raise KeyboardInterrupt recall_storage_uri, recall_storage_path = config.recall_storage_uri, config.recall_storage_path # configure postgres if recall_storage_type == "postgres": recall_storage_uri = questionary.text( "Enter postgres connection string (e.g. postgresql+pg8000://{user}:{password}@{ip}:5432/{database}):", default=config.recall_storage_uri if config.recall_storage_uri else "", ).ask() if recall_storage_uri is None: raise KeyboardInterrupt return recall_storage_type, recall_storage_uri, recall_storage_path @app.command() def configure(): """Updates default MemGPT configurations""" # check credentials credentials = MemGPTCredentials.load() openai_key = get_openai_credentials() azure_creds = get_azure_credentials() MemGPTConfig.create_config_dir() # Will pre-populate with defaults, or what the user previously set config = MemGPTConfig.load() try: model_endpoint_type, model_endpoint = configure_llm_endpoint( config=config, credentials=credentials, ) model, model_wrapper, context_window = configure_model( config=config, credentials=credentials, model_endpoint_type=str(model_endpoint_type), model_endpoint=str(model_endpoint), ) embedding_endpoint_type, embedding_endpoint, embedding_dim, embedding_model = configure_embedding_endpoint( config=config, credentials=credentials, ) default_preset, default_persona, default_human, default_agent = configure_cli( config=config, credentials=credentials, ) archival_storage_type, archival_storage_uri, archival_storage_path = configure_archival_storage( config=config, credentials=credentials, ) recall_storage_type, recall_storage_uri, recall_storage_path = configure_recall_storage( config=config, credentials=credentials, ) except ValueError as e: typer.secho(str(e), fg=typer.colors.RED) return # openai key might have gotten added along the way openai_key = credentials.openai_key if credentials.openai_key is not None else openai_key # TODO: remove most of this (deplicated with User table) config = MemGPTConfig( default_llm_config=LLMConfig( model=model, model_endpoint=model_endpoint, model_endpoint_type=model_endpoint_type, model_wrapper=model_wrapper, context_window=context_window, ), default_embedding_config=EmbeddingConfig( embedding_endpoint_type=embedding_endpoint_type, embedding_endpoint=embedding_endpoint, embedding_dim=embedding_dim, embedding_model=embedding_model, ), # cli configs preset=default_preset, persona=default_persona, human=default_human, # storage archival_storage_type=archival_storage_type, archival_storage_uri=archival_storage_uri, archival_storage_path=archival_storage_path, # recall storage recall_storage_type=recall_storage_type, recall_storage_uri=recall_storage_uri, recall_storage_path=recall_storage_path, # metadata storage (currently forced to match recall storage) metadata_storage_type=recall_storage_type, metadata_storage_uri=recall_storage_uri, metadata_storage_path=recall_storage_path, ) typer.secho(f"📖 Saving config to {config.config_path}", fg=typer.colors.GREEN) config.save() # create user records ms = MetadataStore(config) user_id = uuid.UUID(config.anon_clientid) user = User( id=uuid.UUID(config.anon_clientid), default_agent=default_agent, ) if ms.get_user(user_id): # update user ms.update_user(user) else: ms.create_user(user) class ListChoice(str, Enum): agents = "agents" humans = "humans" personas = "personas" sources = "sources" @app.command() def list(arg: Annotated[ListChoice, typer.Argument]): config = MemGPTConfig.load() ms = MetadataStore(config) user_id = uuid.UUID(config.anon_clientid) if arg == ListChoice.agents: """List all agents""" table = PrettyTable() table.field_names = ["Name", "LLM Model", "Embedding Model", "Embedding Dim", "Persona", "Human", "Data Source", "Create Time"] for agent in tqdm(ms.list_agents(user_id=user_id)): source_ids = ms.list_attached_sources(agent_id=agent.id) assert all([source_id is not None and isinstance(source_id, uuid.UUID) for source_id in source_ids]) sources = [ms.get_source(source_id=source_id) for source_id in source_ids] assert all([source is not None and isinstance(source, Source)] for source in sources) source_names = [source.name for source in sources if source is not None] table.add_row( [ agent.name, agent.llm_config.model, agent.embedding_config.embedding_model, agent.embedding_config.embedding_dim, agent.persona, agent.human, ",".join(source_names), utils.format_datetime(agent.created_at), ] ) print(table) elif arg == ListChoice.humans: """List all humans""" table = PrettyTable() table.field_names = ["Name", "Text"] for human_file in utils.list_human_files(): text = open(human_file, "r").read() name = os.path.basename(human_file).replace("txt", "") table.add_row([name, text]) print(table) elif arg == ListChoice.personas: """List all personas""" table = PrettyTable() table.field_names = ["Name", "Text"] for persona_file in utils.list_persona_files(): print(persona_file) text = open(persona_file, "r").read() name = os.path.basename(persona_file).replace(".txt", "") table.add_row([name, text]) print(table) elif arg == ListChoice.sources: """List all data sources""" # create table table = PrettyTable() table.field_names = ["Name", "Embedding Model", "Embedding Dim", "Created At", "Agents"] # TODO: eventually look accross all storage connections # TODO: add data source stats # TODO: connect to agents # get all sources for source in ms.list_sources(user_id=user_id): # get attached agents agent_ids = ms.list_attached_agents(source_id=source.id) agent_states = [ms.get_agent(agent_id=agent_id) for agent_id in agent_ids] agent_names = [agent_state.name for agent_state in agent_states if agent_state is not None] table.add_row( [source.name, source.embedding_model, source.embedding_dim, utils.format_datetime(source.created_at), ",".join(agent_names)] ) print(table) else: raise ValueError(f"Unknown argument {arg}") @app.command() def add( option: str, # [human, persona] name: Annotated[str, typer.Option(help="Name of human/persona")], text: Annotated[Optional[str], typer.Option(help="Text of human/persona")] = None, filename: Annotated[Optional[str], typer.Option("-f", help="Specify filename")] = None, ): """Add a person/human""" if option == "persona": directory = os.path.join(MEMGPT_DIR, "personas") elif option == "human": directory = os.path.join(MEMGPT_DIR, "humans") else: raise ValueError(f"Unknown kind {option}") if filename: assert text is None, f"Cannot provide both filename and text" # copy file to directory shutil.copyfile(filename, os.path.join(directory, name)) if text: assert filename is None, f"Cannot provide both filename and text" # write text to file with open(os.path.join(directory, name), "w") as f: f.write(text) @app.command() def delete(option: str, name: str): """Delete a source from the archival memory.""" config = MemGPTConfig.load() user_id = uuid.UUID(config.anon_clientid) ms = MetadataStore(config) assert ms.get_user(user_id=user_id), f"User {user_id} does not exist" try: # delete from metadata if option == "source": # delete metadata source = ms.get_source(source_name=name, user_id=user_id) assert source is not None, f"Source {name} does not exist" ms.delete_source(source_id=source.id) # delete from passages conn = StorageConnector.get_storage_connector(TableType.PASSAGES, config, user_id=user_id) conn.delete({"data_source": name}) assert ( conn.get_all({"data_source": name}) == [] ), f"Expected no passages with source {name}, but got {conn.get_all({'data_source': name})}" # TODO: should we also delete from agents? elif option == "agent": agent = ms.get_agent(agent_name=name, user_id=user_id) assert agent is not None, f"Agent {name} for user_id {user_id} does not exist" # recall memory recall_conn = StorageConnector.get_storage_connector(TableType.RECALL_MEMORY, config, user_id=user_id, agent_id=agent.id) recall_conn.delete({"agent_id": agent.id}) # archival memory archival_conn = StorageConnector.get_storage_connector(TableType.ARCHIVAL_MEMORY, config, user_id=user_id, agent_id=agent.id) archival_conn.delete({"agent_id": agent.id}) # metadata ms.delete_agent(agent_id=agent.id) else: raise ValueError(f"Option {option} not implemented") typer.secho(f"Deleted source '{name}'", fg=typer.colors.GREEN) except Exception as e: typer.secho(f"Failed to deleted source '{name}'\n{e}", fg=typer.colors.RED)