import json
import re
import warnings
from typing import List, Optional
from letta.schemas.llm_config import LLMConfig
from letta.schemas.message import Message as _Message
from letta.schemas.openai.chat_completion_request import AssistantMessage, ChatCompletionRequest, ChatMessage
from letta.schemas.openai.chat_completion_request import FunctionCall as ToolFunctionChoiceFunctionCall
from letta.schemas.openai.chat_completion_request import Tool, ToolFunctionChoice, ToolMessage, UserMessage, cast_message_to_subtype
from letta.schemas.openai.chat_completion_response import ChatCompletionResponse
from letta.schemas.openai.openai import Function, ToolCall
from letta.utils import get_tool_call_id
def merge_tool_message(previous_message: ChatMessage, tool_message: ToolMessage) -> ChatMessage:
"""
Merge `ToolMessage` objects into the previous message.
"""
previous_message.content += (
f" content: {tool_message.content}, role: {tool_message.role}, tool_call_id: {tool_message.tool_call_id}"
)
return previous_message
def handle_assistant_message(assistant_message: AssistantMessage) -> AssistantMessage:
"""
For `AssistantMessage` objects, remove the `tool_calls` field and add them to the `content` field.
"""
if "tool_calls" in assistant_message.dict().keys():
assistant_message.content = "".join(
[
# f" name: {tool_call.function.name}, function: {tool_call.function}"
f" {json.dumps(tool_call.function.dict())} "
for tool_call in assistant_message.tool_calls
]
)
del assistant_message.tool_calls
return assistant_message
def map_messages_to_deepseek_format(messages: List[ChatMessage]) -> List[_Message]:
"""
Deepeek API has the following constraints: messages must be interleaved between user and assistant messages, ending on a user message.
Tools are currently unstable for V3 and not supported for R1 in the API: https://api-docs.deepseek.com/guides/function_calling.
This function merges ToolMessages into AssistantMessages and removes ToolCalls from AssistantMessages, and adds a dummy user message
at the end.
"""
deepseek_messages = []
for idx, message in enumerate(messages):
# First message is the system prompt, add it
if idx == 0 and message.role == "system":
deepseek_messages.append(message)
continue
if message.role == "user":
if deepseek_messages[-1].role == "assistant" or deepseek_messages[-1].role == "system":
# User message, add it
deepseek_messages.append(UserMessage(content=message.content))
else:
# add to the content of the previous message
deepseek_messages[-1].content += message.content
elif message.role == "assistant":
if deepseek_messages[-1].role == "user":
# Assistant message, remove tool calls and add them to the content
deepseek_messages.append(handle_assistant_message(message))
else:
# add to the content of the previous message
deepseek_messages[-1].content += message.content
elif message.role == "tool" and deepseek_messages[-1].role == "assistant":
# Tool message, add it to the last assistant message
merged_message = merge_tool_message(deepseek_messages[-1], message)
deepseek_messages[-1] = merged_message
else:
print(f"Skipping message: {message}")
# This needs to end on a user message, add a dummy message if the last was assistant
if deepseek_messages[-1].role == "assistant":
deepseek_messages.append(UserMessage(content=""))
return deepseek_messages
def build_deepseek_chat_completions_request(
llm_config: LLMConfig,
messages: List[_Message],
user_id: Optional[str],
functions: Optional[list],
function_call: Optional[str],
use_tool_naming: bool,
max_tokens: Optional[int],
) -> ChatCompletionRequest:
# if functions and llm_config.put_inner_thoughts_in_kwargs:
# # Special case for LM Studio backend since it needs extra guidance to force out the thoughts first
# # TODO(fix)
# inner_thoughts_desc = (
# INNER_THOUGHTS_KWARG_DESCRIPTION_GO_FIRST if ":1234" in llm_config.model_endpoint else INNER_THOUGHTS_KWARG_DESCRIPTION
# )
# functions = add_inner_thoughts_to_functions(
# functions=functions,
# inner_thoughts_key=INNER_THOUGHTS_KWARG,
# inner_thoughts_description=inner_thoughts_desc,
# )
openai_message_list = [cast_message_to_subtype(m.to_openai_dict(put_inner_thoughts_in_kwargs=False)) for m in messages]
if llm_config.model:
model = llm_config.model
else:
warnings.warn(f"Model type not set in llm_config: {llm_config.model_dump_json(indent=4)}")
model = None
if use_tool_naming:
if function_call is None:
tool_choice = None
elif function_call not in ["none", "auto", "required"]:
tool_choice = ToolFunctionChoice(type="function", function=ToolFunctionChoiceFunctionCall(name=function_call))
else:
tool_choice = function_call
def add_functions_to_system_message(system_message: ChatMessage):
system_message.content += f" {''.join(json.dumps(f) for f in functions)} "
system_message.content += f'Select best function to call simply respond with a single json block with the fields "name" and "arguments". Use double quotes around the arguments.'
if llm_config.model == "deepseek-reasoner": # R1 currently doesn't support function calling natively
add_functions_to_system_message(
openai_message_list[0]
) # Inject additional instructions to the system prompt with the available functions
openai_message_list = map_messages_to_deepseek_format(openai_message_list)
data = ChatCompletionRequest(
model=model,
messages=openai_message_list,
user=str(user_id),
max_completion_tokens=max_tokens,
temperature=llm_config.temperature,
)
else:
data = ChatCompletionRequest(
model=model,
messages=openai_message_list,
tools=[Tool(type="function", function=f) for f in functions] if functions else None,
tool_choice=tool_choice,
user=str(user_id),
max_completion_tokens=max_tokens,
temperature=llm_config.temperature,
)
else:
data = ChatCompletionRequest(
model=model,
messages=openai_message_list,
functions=functions,
function_call=function_call,
user=str(user_id),
max_completion_tokens=max_tokens,
temperature=llm_config.temperature,
)
return data
def convert_deepseek_response_to_chatcompletion(
response: ChatCompletionResponse,
) -> ChatCompletionResponse:
"""
Example response from DeepSeek:
ChatCompletion(
id='bc7f7d25-82e4-443a-b217-dfad2b66da8e',
choices=[
Choice(
finish_reason='stop',
index=0,
logprobs=None,
message=ChatCompletionMessage(
content='{"function": "send_message", "arguments": {"message": "Hey! Whales are such majestic creatures, aren\'t they? How\'s your day going? 🌊 "}}',
refusal=None,
role='assistant',
audio=None,
function_call=None,
tool_calls=None,
reasoning_content='Okay, the user said "hello whales". Hmm, that\'s an interesting greeting. Maybe they meant "hello there" or are they actually talking about whales? Let me check if I misheard. Whales are fascinating creatures. I should respond in a friendly way. Let me ask them how they\'re doing and mention whales to keep the conversation going.'
)
)
],
created=1738266449,
model='deepseek-reasoner',
object='chat.completion',
service_tier=None,
system_fingerprint='fp_7e73fd9a08',
usage=CompletionUsage(
completion_tokens=111,
prompt_tokens=1270,
total_tokens=1381,
completion_tokens_details=CompletionTokensDetails(
accepted_prediction_tokens=None,
audio_tokens=None,
reasoning_tokens=72,
rejected_prediction_tokens=None
),
prompt_tokens_details=PromptTokensDetails(
audio_tokens=None,
cached_tokens=1088
),
prompt_cache_hit_tokens=1088,
prompt_cache_miss_tokens=182
)
)
"""
def convert_dict_quotes(input_dict: dict):
"""
Convert a dictionary with single-quoted keys to double-quoted keys,
properly handling boolean values and nested structures.
Args:
input_dict (dict): Input dictionary with single-quoted keys
Returns:
str: JSON string with double-quoted keys
"""
# First convert the dictionary to a JSON string to handle booleans properly
json_str = json.dumps(input_dict)
# Function to handle complex string replacements
def replace_quotes(match):
key = match.group(1)
# Escape any existing double quotes in the key
key = key.replace('"', '\\"')
return f'"{key}":'
# Replace single-quoted keys with double-quoted keys
# This regex looks for single-quoted keys followed by a colon
def strip_json_block(text):
# Check if text starts with ```json or similar
if text.strip().startswith("```"):
# Split by \n to remove the first and last lines
lines = text.split("\n")[1:-1]
return "\n".join(lines)
return text
pattern = r"'([^']*)':"
converted_str = re.sub(pattern, replace_quotes, strip_json_block(json_str))
# Parse the string back to ensure valid JSON format
try:
json.loads(converted_str)
return converted_str
except json.JSONDecodeError as e:
raise ValueError(f"Failed to create valid JSON with double quotes: {str(e)}")
def extract_json_block(text):
# Find the first {
start = text.find("{")
if start == -1:
return text
# Track nested braces to find the matching closing brace
brace_count = 0
end = start
for i in range(start, len(text)):
if text[i] == "{":
brace_count += 1
elif text[i] == "}":
brace_count -= 1
if brace_count == 0:
end = i + 1
break
return text[start:end]
content = response.choices[0].message.content
try:
content_dict = json.loads(extract_json_block(content))
if type(content_dict["arguments"]) == str:
content_dict["arguments"] = json.loads(content_dict["arguments"])
tool_calls = [
ToolCall(
id=get_tool_call_id(),
type="function",
function=Function(
name=content_dict["name"],
arguments=convert_dict_quotes(content_dict["arguments"]),
),
)
]
except (json.JSONDecodeError, TypeError, KeyError) as e:
print(e)
tool_calls = response.choices[0].message.tool_calls
raise ValueError(f"Failed to create valid JSON {content}")
# Move the "reasoning_content" into the "content" field
response.choices[0].message.content = response.choices[0].message.reasoning_content
response.choices[0].message.tool_calls = tool_calls
# Remove the "reasoning_content" field
response.choices[0].message.reasoning_content = None
return response