import typer import uuid import json import requests import sys import shutil import io import logging import questionary from pathlib import Path import os import subprocess from enum import Enum from llama_index import set_global_service_context from llama_index import ServiceContext from memgpt.interface import CLIInterface as interface # for printing to terminal from memgpt.cli.cli_config import configure import memgpt.presets.presets as presets import memgpt.utils as utils from memgpt.utils import printd, open_folder_in_explorer, suppress_stdout from memgpt.persistence_manager import LocalStateManager from memgpt.config import MemGPTConfig, AgentConfig from memgpt.constants import MEMGPT_DIR, CLI_WARNING_PREFIX from memgpt.agent import Agent from memgpt.embeddings import embedding_model from memgpt.server.constants import WS_DEFAULT_PORT, REST_DEFAULT_PORT from memgpt.data_types import AgentState, LLMConfig, EmbeddingConfig, User from memgpt.metadata import MetadataStore class QuickstartChoice(Enum): openai = "openai" # azure = "azure" memgpt_hosted = "memgpt" def str_to_quickstart_choice(choice_str: str) -> QuickstartChoice: try: return QuickstartChoice[choice_str] except KeyError: valid_options = [choice.name for choice in QuickstartChoice] raise ValueError(f"{choice_str} is not a valid QuickstartChoice. Valid options are: {valid_options}") def set_config_with_dict(new_config: dict) -> bool: """Set the base config using a dict""" from memgpt.utils import printd old_config = MemGPTConfig.load() modified = False for k, v in vars(old_config).items(): if k in new_config: if v != new_config[k]: printd(f"Replacing config {k}: {v} -> {new_config[k]}") modified = True # old_config[k] = new_config[k] setattr(old_config, k, new_config[k]) # Set the new value using dot notation else: printd(f"Skipping new config {k}: {v} == {new_config[k]}") if modified: printd(f"Saving new config file.") old_config.save() typer.secho(f"šŸ“– MemGPT configuration file updated!", fg=typer.colors.GREEN) typer.secho(f"🧠 model\t-> {old_config.model}\nšŸ–„ļø endpoint\t-> {old_config.model_endpoint}", fg=typer.colors.GREEN) return True else: typer.secho(f"šŸ“– MemGPT configuration file unchanged.", fg=typer.colors.WHITE) typer.secho(f"🧠 model\t-> {old_config.model}\nšŸ–„ļø endpoint\t-> {old_config.model_endpoint}", fg=typer.colors.WHITE) return False def quickstart( backend: QuickstartChoice = typer.Option("memgpt", help="Quickstart setup backend"), latest: bool = typer.Option(False, "--latest", help="Use --latest to pull the latest config from online"), debug: bool = typer.Option(False, "--debug", help="Use --debug to enable debugging output"), terminal: bool = True, ): """Set the base config file with a single command""" # setup logger utils.DEBUG = debug logging.getLogger().setLevel(logging.CRITICAL) if debug: logging.getLogger().setLevel(logging.DEBUG) # make sure everything is set up properly MemGPTConfig.create_config_dir() config_was_modified = False if backend == QuickstartChoice.memgpt_hosted: # if latest, try to pull the config from the repo # fallback to using local if latest: # Download the latest memgpt hosted config url = "https://raw.githubusercontent.com/cpacker/MemGPT/main/memgpt/configs/memgpt_hosted.json" response = requests.get(url) # Check if the request was successful if response.status_code == 200: # Parse the response content as JSON config = response.json() # Output a success message and the first few items in the dictionary as a sample printd("JSON config file downloaded successfully.") config_was_modified = set_config_with_dict(config) else: typer.secho(f"Failed to download config from {url}. Status code: {response.status_code}", fg=typer.colors.RED) # Load the file from the relative path script_dir = os.path.dirname(__file__) # Get the directory where the script is located backup_config_path = os.path.join(script_dir, "..", "configs", "memgpt_hosted.json") try: with open(backup_config_path, "r") as file: backup_config = json.load(file) printd("Loaded backup config file successfully.") config_was_modified = set_config_with_dict(backup_config) except FileNotFoundError: typer.secho(f"Backup config file not found at {backup_config_path}", fg=typer.colors.RED) return else: # Load the file from the relative path script_dir = os.path.dirname(__file__) # Get the directory where the script is located backup_config_path = os.path.join(script_dir, "..", "configs", "memgpt_hosted.json") try: with open(backup_config_path, "r") as file: backup_config = json.load(file) printd("Loaded config file successfully.") config_was_modified = set_config_with_dict(backup_config) except FileNotFoundError: typer.secho(f"Config file not found at {backup_config_path}", fg=typer.colors.RED) return elif backend == QuickstartChoice.openai: # Make sure we have an API key api_key = os.getenv("OPENAI_API_KEY") while api_key is None or len(api_key) == 0: # Ask for API key as input api_key = questionary.text("Enter your OpenAI API key (starts with 'sk-', see https://platform.openai.com/api-keys):").ask() # if latest, try to pull the config from the repo # fallback to using local if latest: url = "https://raw.githubusercontent.com/cpacker/MemGPT/main/memgpt/configs/openai.json" response = requests.get(url) # Check if the request was successful if response.status_code == 200: # Parse the response content as JSON config = response.json() # Output a success message and the first few items in the dictionary as a sample print("JSON config file downloaded successfully.") # Add the API key config["openai_key"] = api_key config_was_modified = set_config_with_dict(config) else: typer.secho(f"Failed to download config from {url}. Status code: {response.status_code}", fg=typer.colors.RED) # Load the file from the relative path script_dir = os.path.dirname(__file__) # Get the directory where the script is located backup_config_path = os.path.join(script_dir, "..", "configs", "openai.json") try: with open(backup_config_path, "r") as file: backup_config = json.load(file) backup_config["openai_key"] = api_key printd("Loaded backup config file successfully.") config_was_modified = set_config_with_dict(backup_config) except FileNotFoundError: typer.secho(f"Backup config file not found at {backup_config_path}", fg=typer.colors.RED) return else: # Load the file from the relative path script_dir = os.path.dirname(__file__) # Get the directory where the script is located backup_config_path = os.path.join(script_dir, "..", "configs", "openai.json") try: with open(backup_config_path, "r") as file: backup_config = json.load(file) backup_config["openai_key"] = api_key printd("Loaded config file successfully.") config_was_modified = set_config_with_dict(backup_config) except FileNotFoundError: typer.secho(f"Config file not found at {backup_config_path}", fg=typer.colors.RED) return else: raise NotImplementedError(backend) # 'terminal' = quickstart was run alone, in which case we should guide the user on the next command if terminal: if config_was_modified: typer.secho('⚔ Run "memgpt run" to create an agent with the new config.', fg=typer.colors.YELLOW) else: typer.secho('⚔ Run "memgpt run" to create an agent.', fg=typer.colors.YELLOW) def open_folder(): """Open a folder viewer of the MemGPT home directory""" try: print(f"Opening home folder: {MEMGPT_DIR}") open_folder_in_explorer(MEMGPT_DIR) except Exception as e: print(f"Failed to open folder with system viewer, error:\n{e}") class ServerChoice(Enum): rest_api = "rest" ws_api = "websocket" def server( type: ServerChoice = typer.Option("rest", help="Server to run"), port: int = typer.Option(None, help="Port to run the server on"), host: str = typer.Option(None, help="Host to run the server on (default to localhost)"), ): """Launch a MemGPT server process""" if type == ServerChoice.rest_api: if port is None: port = REST_DEFAULT_PORT # Change to the desired directory script_path = Path(__file__).resolve() script_dir = script_path.parent server_directory = os.path.join(script_dir.parent, "server", "rest_api") if host is None: command = f"uvicorn server:app --reload --port {port}" else: command = f"uvicorn server:app --reload --port {port} --host {host}" # Run the command print(f"Running REST server: {command} (inside {server_directory})") try: # Start the subprocess in a new session process = subprocess.Popen(command, shell=True, start_new_session=True, cwd=server_directory) process.wait() except KeyboardInterrupt: # Handle CTRL-C print("Terminating the server...") process.terminate() try: process.wait(timeout=5) except subprocess.TimeoutExpired: process.kill() print("Server terminated with kill()") sys.exit(0) elif type == ServerChoice.ws_api: if port is None: port = WS_DEFAULT_PORT # Change to the desired directory script_path = Path(__file__).resolve() script_dir = script_path.parent server_directory = os.path.join(script_dir.parent, "server", "ws_api") command = f"python server.py {port}" # Run the command print(f"Running WS (websockets) server: {command} (inside {server_directory})") try: # Start the subprocess in a new session process = subprocess.Popen(command, shell=True, start_new_session=True, cwd=server_directory) process.wait() except KeyboardInterrupt: # Handle CTRL-C print("Terminating the server...") process.terminate() try: process.wait(timeout=5) except subprocess.TimeoutExpired: process.kill() print("Server terminated with kill()") sys.exit(0) def run( persona: str = typer.Option(None, help="Specify persona"), agent: str = typer.Option(None, help="Specify agent save file"), human: str = typer.Option(None, help="Specify human"), preset: str = typer.Option(None, help="Specify preset"), # model flags model: str = typer.Option(None, help="Specify the LLM model"), model_wrapper: str = typer.Option(None, help="Specify the LLM model wrapper"), model_endpoint: str = typer.Option(None, help="Specify the LLM model endpoint"), model_endpoint_type: str = typer.Option(None, help="Specify the LLM model endpoint type"), context_window: int = typer.Option(None, help="The context window of the LLM you are using (e.g. 8k for most Mistral 7B variants)"), # other first: bool = typer.Option(False, "--first", help="Use --first to send the first message in the sequence"), strip_ui: bool = typer.Option(False, help="Remove all the bells and whistles in CLI output (helpful for testing)"), debug: bool = typer.Option(False, "--debug", help="Use --debug to enable debugging output"), no_verify: bool = typer.Option(False, help="Bypass message verification"), yes: bool = typer.Option(False, "-y", help="Skip confirmation prompt and use defaults"), ): """Start chatting with an MemGPT agent Example usage: `memgpt run --agent myagent --data-source mydata --persona mypersona --human myhuman --model gpt-3.5-turbo` :param persona: Specify persona :param agent: Specify agent name (will load existing state if the agent exists, or create a new one with that name) :param human: Specify human :param model: Specify the LLM model """ # setup logger utils.DEBUG = debug logging.getLogger().setLevel(logging.CRITICAL) if debug: logging.getLogger().setLevel(logging.DEBUG) if not MemGPTConfig.exists(): # if no config, ask about quickstart # do you want to do: # - openai (run quickstart) # - memgpt hosted (run quickstart) # - other (run configure) if yes: # if user is passing '-y' to bypass all inputs, use memgpt hosted # since it can't fail out if you don't have an API key quickstart(backend=QuickstartChoice.memgpt_hosted) config = MemGPTConfig() else: config_choices = { "memgpt": "Use the free MemGPT endpoints", "openai": "Use OpenAI (requires an OpenAI API key)", "other": "Other (OpenAI Azure, custom LLM endpoint, etc)", } print() config_selection = questionary.select( "How would you like to set up MemGPT?", choices=list(config_choices.values()), default=config_choices["memgpt"], ).ask() if config_selection == config_choices["memgpt"]: print() quickstart(backend=QuickstartChoice.memgpt_hosted, debug=debug, terminal=False, latest=False) elif config_selection == config_choices["openai"]: print() quickstart(backend=QuickstartChoice.openai, debug=debug, terminal=False, latest=False) elif config_selection == config_choices["other"]: configure() else: raise ValueError(config_selection) config = MemGPTConfig.load() else: # load config config = MemGPTConfig.load() # force re-configuration is config is from old version if config.memgpt_version is None: # TODO: eventually add checks for older versions, if config changes again typer.secho("MemGPT has been updated to a newer version, so re-running configuration.", fg=typer.colors.YELLOW) configure() config = MemGPTConfig.load() # read user id from config ms = MetadataStore(config) user_id = uuid.UUID(config.anon_clientid) user = ms.get_user(user_id=user_id) if user is None: ms.create_user(User(id=user_id)) user = ms.get_user(user_id=user_id) if user is None: typer.secho(f"Failed to create default user in database.", fg=typer.colors.RED) sys.exit(1) # override with command line arguments if debug: config.debug = debug if no_verify: config.no_verify = no_verify # determine agent to use, if not provided if not yes and not agent: agents = ms.list_agents(user_id=user.id) agents = [a.name for a in agents] if len(agents) > 0 and not any([persona, human, model]): print() select_agent = questionary.confirm("Would you like to select an existing agent?").ask() if select_agent: agent = questionary.select("Select agent:", choices=agents).ask() # create agent config if agent and ms.get_agent(agent_name=agent, user_id=user.id): # use existing agent typer.secho(f"\nšŸ” Using existing agent {agent}", fg=typer.colors.GREEN) # agent_config = AgentConfig.load(agent) agent_state = ms.get_agent(agent_name=agent, user_id=user_id) printd("Loading agent state:", agent_state.id) printd("Agent state:", agent_state.state) # printd("State path:", agent_config.save_state_dir()) # printd("Persistent manager path:", agent_config.save_persistence_manager_dir()) # printd("Index path:", agent_config.save_agent_index_dir()) # persistence_manager = LocalStateManager(agent_config).load() # TODO: implement load # TODO: load prior agent state if persona and persona != agent_state.persona: typer.secho(f"{CLI_WARNING_PREFIX}Overriding existing persona {agent_state.persona} with {persona}", fg=typer.colors.YELLOW) agent_state.persona = persona # raise ValueError(f"Cannot override {agent_state.name} existing persona {agent_state.persona} with {persona}") if human and human != agent_state.human: typer.secho(f"{CLI_WARNING_PREFIX}Overriding existing human {agent_state.human} with {human}", fg=typer.colors.YELLOW) agent_state.human = human # raise ValueError(f"Cannot override {agent_config.name} existing human {agent_config.human} with {human}") # Allow overriding model specifics (model, model wrapper, model endpoint IP + type, context_window) if model and model != agent_state.llm_config.model: typer.secho( f"{CLI_WARNING_PREFIX}Overriding existing model {agent_state.llm_config.model} with {model}", fg=typer.colors.YELLOW ) agent_state.llm_config.model = model if context_window is not None and int(context_window) != agent_state.llm_config.context_window: typer.secho( f"{CLI_WARNING_PREFIX}Overriding existing context window {agent_state.llm_config.context_window} with {context_window}", fg=typer.colors.YELLOW, ) agent_state.llm_config.context_window = context_window if model_wrapper and model_wrapper != agent_state.llm_config.model_wrapper: typer.secho( f"{CLI_WARNING_PREFIX}Overriding existing model wrapper {agent_state.llm_config.model_wrapper} with {model_wrapper}", fg=typer.colors.YELLOW, ) agent_state.llm_config.model_wrapper = model_wrapper if model_endpoint and model_endpoint != agent_state.llm_config.model_endpoint: typer.secho( f"{CLI_WARNING_PREFIX}Overriding existing model endpoint {agent_state.llm_config.model_endpoint} with {model_endpoint}", fg=typer.colors.YELLOW, ) agent_state.llm_config.model_endpoint = model_endpoint if model_endpoint_type and model_endpoint_type != agent_state.llm_config.model_endpoint_type: typer.secho( f"{CLI_WARNING_PREFIX}Overriding existing model endpoint type {agent_state.llm_config.model_endpoint_type} with {model_endpoint_type}", fg=typer.colors.YELLOW, ) agent_state.llm_config.model_endpoint_type = model_endpoint_type # Update the agent with any overrides ms.update_agent(agent_state) # create agent memgpt_agent = Agent(agent_state, interface=interface) else: # create new agent # create new agent config: override defaults with args if provided typer.secho("\n🧬 Creating new agent...", fg=typer.colors.WHITE) if agent is None: # determine agent name # agent_count = len(ms.list_agents(user_id=user.id)) # agent = f"agent_{agent_count}" agent = utils.create_random_username() agent_state = AgentState( name=agent, user_id=user.id, persona=persona if persona else user.default_persona, human=human if human else user.default_human, preset=preset if preset else user.default_preset, llm_config=user.default_llm_config, embedding_config=user.default_embedding_config, ) ms.create_agent(agent_state) typer.secho(f"-> šŸ¤– Using persona profile '{agent_state.persona}'", fg=typer.colors.WHITE) typer.secho(f"-> šŸ§‘ Using human profile '{agent_state.human}'", fg=typer.colors.WHITE) # Supress llama-index noise # TODO(swooders) add persistence manager code? or comment out? # with suppress_stdout(): # TODO: allow configrable state manager (only local is supported right now) # persistence_manager = LocalStateManager(agent_config) # TODO: insert dataset/pre-fill # create agent try: memgpt_agent = presets.create_agent_from_preset( agent_state=agent_state, interface=interface, ) except ValueError as e: # TODO(swooders) what's the equivalent cleanup code for the new DB refactor? typer.secho(f"Failed to create agent from provided information:\n{e}", fg=typer.colors.RED) # # Delete the directory of the failed agent # try: # # Path to the specific file # agent_config_file = agent_config.agent_config_path # # Check if the file exists # if os.path.isfile(agent_config_file): # # Delete the file # os.remove(agent_config_file) # # Now, delete the directory along with any remaining files in it # agent_save_dir = os.path.join(MEMGPT_DIR, "agents", agent_config.name) # shutil.rmtree(agent_save_dir) # except: # typer.secho(f"Failed to delete agent directory during cleanup:\n{e}", fg=typer.colors.RED) sys.exit(1) typer.secho(f"šŸŽ‰ Created new agent '{agent_state.name}'", fg=typer.colors.GREEN) # pretty print agent config # printd(json.dumps(vars(agent_config), indent=4, sort_keys=True)) # printd(json.dumps(agent_init_state), indent=4, sort_keys=True)) # configure llama index original_stdout = sys.stdout # unfortunate hack required to suppress confusing print statements from llama index sys.stdout = io.StringIO() embed_model = embedding_model(config=agent_state.embedding_config, user_id=user.id) service_context = ServiceContext.from_defaults(llm=None, embed_model=embed_model, chunk_size=config.embedding_chunk_size) set_global_service_context(service_context) sys.stdout = original_stdout # start event loop from memgpt.main import run_agent_loop print() # extra space run_agent_loop(memgpt_agent, config, first, no_verify) # TODO: add back no_verify def attach( agent: str = typer.Option(help="Specify agent to attach data to"), data_source: str = typer.Option(help="Data source to attach to avent"), user_id: uuid.UUID = None, ): # use client ID is no user_id provided config = MemGPTConfig.load() if user_id is None: user_id = uuid.UUID(config.anon_clientid) try: # loads the data contained in data source into the agent's memory from memgpt.agent_store.storage import StorageConnector, TableType from tqdm import tqdm ms = MetadataStore(config) agent = ms.get_agent(agent_name=agent, user_id=user_id) source = ms.get_source(source_name=data_source, user_id=user_id) assert source is not None, f"Source {data_source} does not exist for user {user_id}" # get storage connectors with suppress_stdout(): source_storage = StorageConnector.get_storage_connector(TableType.PASSAGES, config, user_id=user_id) dest_storage = StorageConnector.get_storage_connector(TableType.ARCHIVAL_MEMORY, config, user_id=user_id, agent_id=agent.id) size = source_storage.size({"data_source": data_source}) typer.secho(f"Ingesting {size} passages into {agent.name}", fg=typer.colors.GREEN) page_size = 100 generator = source_storage.get_all_paginated(filters={"data_source": data_source}, page_size=page_size) # yields List[Passage] passages = [] for i in tqdm(range(0, size, page_size)): passages = next(generator) print("inserting", passages) # need to associated passage with agent (for filtering) for passage in passages: passage.agent_id = agent.id # insert into agent archival memory dest_storage.insert_many(passages) # save destination storage dest_storage.save() # attach to agent source_id = ms.get_source(source_name=data_source, user_id=user_id).id ms.attach_source(agent_id=agent.id, source_id=source_id, user_id=user_id) total_agent_passages = dest_storage.size() typer.secho( f"Attached data source {data_source} to agent {agent}, consisting of {len(passages)}. Agent now has {total_agent_passages} embeddings in archival memory.", fg=typer.colors.GREEN, ) except KeyboardInterrupt: typer.secho("Operation interrupted by KeyboardInterrupt.", fg=typer.colors.YELLOW) def version(): import memgpt print(memgpt.__version__) return memgpt.__version__