import json import os import uuid from datetime import datetime, timezone from typing import List import pytest from letta import create_client from letta.agent import Agent from letta.client.client import LocalClient from letta.llm_api.helpers import calculate_summarizer_cutoff from letta.schemas.embedding_config import EmbeddingConfig from letta.schemas.enums import MessageRole from letta.schemas.letta_message_content import TextContent from letta.schemas.llm_config import LLMConfig from letta.schemas.message import Message from letta.streaming_interface import StreamingRefreshCLIInterface from tests.helpers.endpoints_helper import EMBEDDING_CONFIG_PATH from tests.helpers.utils import cleanup # constants LLM_CONFIG_DIR = "tests/configs/llm_model_configs" SUMMARY_KEY_PHRASE = "The following is a summary" test_agent_name = f"test_client_{str(uuid.uuid4())}" # TODO: these tests should include looping through LLM providers, since behavior may vary across providers # TODO: these tests should add function calls into the summarized message sequence:W @pytest.fixture(scope="module") def client(): client = create_client() # client.set_default_llm_config(LLMConfig.default_config("gpt-4o-mini")) client.set_default_llm_config(LLMConfig.default_config("gpt-4o-mini")) client.set_default_embedding_config(EmbeddingConfig.default_config(provider="openai")) yield client @pytest.fixture(scope="module") def agent_state(client): # Generate uuid for agent name for this example agent_state = client.create_agent(name=test_agent_name) yield agent_state client.delete_agent(agent_state.id) # Sample data setup def generate_message(role: str, text: str = None, tool_calls: List = None) -> Message: """Helper to generate a Message object.""" return Message( id="message-" + str(uuid.uuid4()), role=MessageRole(role), content=[TextContent(text=text or f"{role} message text")], created_at=datetime.now(timezone.utc), tool_calls=tool_calls or [], ) def test_cutoff_calculation(mocker): """Test basic scenarios where the function calculates the cutoff correctly.""" # Arrange logger = mocker.Mock() # Mock logger messages = [ generate_message("system"), generate_message("user"), generate_message("assistant"), generate_message("user"), generate_message("assistant"), ] mocker.patch("letta.settings.summarizer_settings.desired_memory_token_pressure", 0.5) mocker.patch("letta.settings.summarizer_settings.evict_all_messages", False) # Basic tests token_counts = [4, 2, 8, 2, 2] cutoff = calculate_summarizer_cutoff(messages, token_counts, logger) assert cutoff == 3 assert messages[cutoff - 1].role == MessageRole.assistant token_counts = [4, 2, 2, 2, 2] cutoff = calculate_summarizer_cutoff(messages, token_counts, logger) assert cutoff == 5 assert messages[cutoff - 1].role == MessageRole.assistant token_counts = [2, 2, 3, 2, 2] cutoff = calculate_summarizer_cutoff(messages, token_counts, logger) assert cutoff == 3 assert messages[cutoff - 1].role == MessageRole.assistant # Evict all messages # Should give the end of the token_counts, even though it is not necessary (can just evict up to the 100) mocker.patch("letta.settings.summarizer_settings.evict_all_messages", True) token_counts = [1, 1, 100, 1, 1] cutoff = calculate_summarizer_cutoff(messages, token_counts, logger) assert cutoff == 5 assert messages[cutoff - 1].role == MessageRole.assistant # Don't evict all messages with same token_counts, cutoff now should be at the 100 # Should give the end of the token_counts, even though it is not necessary (can just evict up to the 100) mocker.patch("letta.settings.summarizer_settings.evict_all_messages", False) cutoff = calculate_summarizer_cutoff(messages, token_counts, logger) assert cutoff == 3 assert messages[cutoff - 1].role == MessageRole.assistant # Set `keep_last_n_messages` mocker.patch("letta.settings.summarizer_settings.keep_last_n_messages", 3) token_counts = [4, 2, 2, 2, 2] cutoff = calculate_summarizer_cutoff(messages, token_counts, logger) assert cutoff == 2 assert messages[cutoff - 1].role == MessageRole.user def test_summarize_many_messages_basic(client, disable_e2b_api_key): small_context_llm_config = LLMConfig.default_config("gpt-4o-mini") small_context_llm_config.context_window = 3000 small_agent_state = client.create_agent( name="small_context_agent", llm_config=small_context_llm_config, ) for _ in range(10): client.user_message( agent_id=small_agent_state.id, message="hi " * 60, ) client.delete_agent(small_agent_state.id) def test_summarize_messages_inplace(client, agent_state, disable_e2b_api_key): """Test summarization via sending the summarize CLI command or via a direct call to the agent object""" # First send a few messages (5) response = client.user_message( agent_id=agent_state.id, message="Hey, how's it going? What do you think about this whole shindig", ).messages assert response is not None and len(response) > 0 print(f"test_summarize: response={response}") response = client.user_message( agent_id=agent_state.id, message="Any thoughts on the meaning of life?", ).messages assert response is not None and len(response) > 0 print(f"test_summarize: response={response}") response = client.user_message(agent_id=agent_state.id, message="Does the number 42 ring a bell?").messages assert response is not None and len(response) > 0 print(f"test_summarize: response={response}") response = client.user_message( agent_id=agent_state.id, message="Would you be surprised to learn that you're actually conversing with an AI right now?", ).messages assert response is not None and len(response) > 0 print(f"test_summarize: response={response}") # reload agent object agent_obj = client.server.load_agent(agent_id=agent_state.id, actor=client.user) agent_obj.summarize_messages_inplace() def test_auto_summarize(client, disable_e2b_api_key): """Test that the summarizer triggers by itself""" small_context_llm_config = LLMConfig.default_config("gpt-4o-mini") small_context_llm_config.context_window = 4000 small_agent_state = client.create_agent( name="small_context_agent", llm_config=small_context_llm_config, ) try: def summarize_message_exists(messages: List[Message]) -> bool: for message in messages: if message.content[0].text and "The following is a summary of the previous" in message.content[0].text: print(f"Summarize message found after {message_count} messages: \n {message.content[0].text}") return True return False MAX_ATTEMPTS = 10 message_count = 0 while True: # send a message response = client.user_message( agent_id=small_agent_state.id, message="What is the meaning of life?", ) message_count += 1 print(f"Message {message_count}: \n\n{response.messages}" + "--------------------------------") # check if the summarize message is inside the messages assert isinstance(client, LocalClient), "Test only works with LocalClient" in_context_messages = client.server.agent_manager.get_in_context_messages(agent_id=small_agent_state.id, actor=client.user) print("SUMMARY", summarize_message_exists(in_context_messages)) if summarize_message_exists(in_context_messages): break if message_count > MAX_ATTEMPTS: raise Exception(f"Summarize message not found after {message_count} messages") finally: client.delete_agent(small_agent_state.id) @pytest.mark.parametrize( "config_filename", [ "openai-gpt-4o.json", "azure-gpt-4o-mini.json", "claude-3-5-haiku.json", # "groq.json", TODO: Support groq, rate limiting currently makes it impossible to test # "gemini-pro.json", TODO: Gemini is broken ], ) def test_summarizer(config_filename, client, agent_state): namespace = uuid.NAMESPACE_DNS agent_name = str(uuid.uuid5(namespace, f"integration-test-summarizer-{config_filename}")) # Get the LLM config filename = os.path.join(LLM_CONFIG_DIR, config_filename) config_data = json.load(open(filename, "r")) # Create client and clean up agents llm_config = LLMConfig(**config_data) embedding_config = EmbeddingConfig(**json.load(open(EMBEDDING_CONFIG_PATH))) client = create_client() client.set_default_llm_config(llm_config) client.set_default_embedding_config(embedding_config) cleanup(client=client, agent_uuid=agent_name) # Create agent agent_state = client.create_agent(name=agent_name, llm_config=llm_config, embedding_config=embedding_config) full_agent_state = client.get_agent(agent_id=agent_state.id) letta_agent = Agent( interface=StreamingRefreshCLIInterface(), agent_state=full_agent_state, first_message_verify_mono=False, user=client.user, ) # Make conversation messages = [ "Did you know that honey never spoils? Archaeologists have found pots of honey in ancient Egyptian tombs that are over 3,000 years old and still perfectly edible.", "Octopuses have three hearts, and two of them stop beating when they swim.", ] for m in messages: letta_agent.step_user_message( user_message_str=m, first_message=False, skip_verify=False, stream=False, ) # Invoke a summarize letta_agent.summarize_messages_inplace() in_context_messages = client.get_in_context_messages(agent_state.id) assert SUMMARY_KEY_PHRASE in in_context_messages[1].content[0].text, f"Test failed for config: {config_filename}"