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Abstract

Large language models (LLMs) have revolution-
ized Al, but are constrained by limited context
windows, hindering their utility in tasks like ex-
tended conversations and document analysis. To
enable using context beyond limited context win-
dows, we propose virtual context management, a
technique drawing inspiration from hierarchical
memory systems in traditional operating systems
which provide the illusion of an extended vir-
tual memory via paging between physical mem-
ory and disk. Using this technique, we introduce
MemGPT (MemoryGPT), a system that intelli-
gently manages different storage tiers in order
to effectively provide extended context within
the LLM’s limited context window. We evalu-
ate our OS-inspired design in two domains where
the limited context windows of modern LLMs
severely handicaps their performance: document
analysis, where MemGPT is able to analyze
large documents that far exceed the underly-
ing LLM’s context window, and multi-session
chat, where MemGPT can create conversational
agents that remember, reflect, and evolve dynam-
ically through long-term interactions with their
users. We release MemGPT code and data for
our experiments at https://research.memgpt.ail

1. Introduction

In recent years, large language models (LLMs) and their
underlying transformer architecture (Vaswani et al., 2017}
Devlin et al.| 2018} |Brown et al., 2020; Ouyang et al.,[2022))
have become the cornerstone of conversational Al and have
led to a wide array of consumer and enterprise applications.
Despite these advances, the limited fixed-length context
windows used by LLMs significantly hinders their appli-
cability to long conversations or reasoning about long doc-

uments. For example, the most widely used open-source
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LLMs can only support a few dozen back-and-forth mes-
sages or reason about a short document before exceeding
their maximum input length (Touvron et al.} 2023)).

Directly extending the context length of transformers in-
curs a quadratic increase in computational time and mem-
ory cost due to the transformer architecture’s self-attention
mechanism, making the design of new long-context archi-
tectures a pressing research challenge (Dai et al.| [2019; |Ki-
taev et al.l |2020; Beltagy et al., 2020). While developing
longer models is an active area of research (Dong et al.,
2023)), even if we could overcome the computational chal-
lenges of context scaling, recent research shows that long-
context models struggle to utilize additional context effec-
tively (Liu et al., 2023a). As consequence, given the con-
siderable resources needed to train state-of-the-art LLMs
and diminishing returns of context scaling, there is a criti-
cal need for alternative techniques to support long context.

In this paper, we study how to provide the illusion of an
infinite context while continuing to use fixed-context mod-
els. Our approach borrows from the idea of virtual memory
paging that was developed to enable applications to work
on datasets that far exceed the available memory by pag-
ing data between main memory and disk. We leverage the
recent progress in function calling abilities of LLM agents
(Schick et al.,[2023; Liu et al., 2023b) to design MemGPT,
an OS-inspired LLM system for virtual context manage-
ment. Using function calls, LLM agents can read and write
to external data sources, modify their own context, and
choose when to return responses to the user.

These capabilities allow LLMs to effective “page” in and
out information between context windows (analogous to
“main memory” in operating systems) and external storage,
similar to hierarchical memory in traditional OSes. In ad-
dition, function calls can be leveraged to manage control
flow between context management, response generation,
and user interactions. This allows for an agent to choose
to iteratively modify what is in its context for a single task,
thereby more effectively utilizing its limited context.

In MemGPT, we treat context windows as a constrained
memory resource, and design a memory hiearchy for LLMs
analogous to memory tiers used in traditional OSes (Patter-
son et al.| |1988). Applications in traditional OSes interact
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February 7

How was your day today?

fun my bf james baked me a birthday cake

Oh wow, happy birthday! *

System Alert: Memory Pressure

working_context.append(“Birthday is February 7")

working_context.append(“Boyfriend named James")

Figure 1. MemGPT (left) writes data to persistent memory after
it receives a system alert about limited context space.

with virtual memory, which provides an illusion of there
being more memory resources than are actually available
in physical (i.e., main) memory by the OS paging over-
flow data to disk and retrieving data (via a page fault) back
into memory when accessed by applications. To provide a
similar illusion of longer context length (analogous to vir-
tual memory), we allow the LLM to manage what is placed
in its own context (analogous to physical memory) via an
‘LLM OS’, which we call MemGPT. MemGPT enables the
LLM to retrieve relevant historical data missing from what
is placed in-context, and also evict less relevant data from
context and into external storage systems. Figure [3]illus-
trates the components of MemGPT.

The combined use of a memory-hierarchy, OS functions
and event-based control flow allow MemGPT to handle
unbounded context using LLMs that have finite context
windows. To demonstrate the utility of our new OS-
inspired LLM system, we evaluate MemGPT on two do-
mains where the performance of existing LLMs is severely
limited by finite context: document analysis, where the
length of standard text files can quickly exceed the input ca-
pacity of modern LLMs, and conversational agents, where
LLMs bound by limited conversation windows lack context
awareness, persona consistency, and long-term memory
during extended conversations. In both settings, MemGPT
is able to overcome the limitations of finite context to out-
perform existing LLM-based approaches.

2. MemGPT (MemoryGPT)

MemGPT’s OS-inspired multi-level memory architecture
delineates between two primary memory types: main con-
text (analogous to main memory/physical memory/RAM)
and external context (analogous to disk memory/disk stor-
age). Main context consists of the LLM prompt tokens—
anything in main context is considered in-context and can
be accessed by the LLM processor during inference. Exter-
nal context refers to any information that is held outside of
the LLMs fixed context window. This out-of-context data

February 7

Did you do anything else to celebrate your birthday? ‘=

yeah we went to six flags!

recall_storage.search(“six flags”)

sults (page 1/1):

| yeah six flags”,

ove six flags been like 100 times”,
‘james and | actually first met at six flags”

Did you go with James? It's so cute how both met there!

Figure 2. MemGPT (left) can search out-of-context data to bring
relevant information into the current context window.

must always be explicitly moved into main context in order
for it to be passed to the LLM processor during inference.
MemGPT provides function calls that the LLM processor
to manage its own memory without any user intervention.

2.1. Main context (prompt tokens)

The prompt tokens in MemGPT are split into three con-
tiguous sections: the system instructions, working con-
text, and FIFO Queue. The system instructions are read-
only (static) and contain information on the MemGPT con-
trol flow, the intended usage of the different memory lev-
els, and instructions on how to use the MemGPT functions
(e.g. how to retrieve out-of-context data). Working con-
text is a fixed-size read/write block of unstructured text,
writeable only via MemGPT function calls. In conversa-
tional settings, working context is intended to be used to
store key facts, preferences, and other important informa-
tion about the user and the persona the agent is adopting,
allowing the agent to converse fluently with the user. The
FIFO queue stores a rolling history of messages, including
messages between the agent and user, as well as system
messages (e.g. memory warnings) and function call inputs
and outputs. The first index in the FIFO queue stores a sys-
tem message containing a recursive summary of messages
that have been evicted from the queue.

2.2. Queue Manager

The queue manager manages messages in recall storage
and the FIFO queue. When a new message is received by
the system, the queue manager appends the incoming mes-
sages to the FIFO queue, concatenates the prompt tokens
and triggers the LLM inference to generate LLM output
(the completion tokens). The queue manager writes both
the incoming message and the generated LLM output to re-
call storage (the MemGPT message database). When mes-
sages in recall storage are retrieved via a MemGPT func-
tion call, the queue manager appends them to the back of
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LLM Finite Context Window (e.g. 8k tokens)

Prompt Tokens
et
1
H  System Instructions
1

Read-Only (static) Read-Write

MemGPT System Prompt Write via Functions

Completion Tokens

Read-Write
Write via Queue Manager

Tt 1

e ——
Archival Storage Function Executor

Read via Functions
Write via Functions

Queue Manager Recall Storage

Read via Functions
Write via Queue Manager

Figure 3. In MemGPT, a fixed-context LLM processor is augmented with a hierarchical memory system and functions that let it manage
its own memory. The LLM’s prompt tokens (inputs), or main context, consist of the system instructions, working context, and a FIFO
queue. The LLM completion tokens (outputs) are interpreted as function calls by the function executor. MemGPT uses functions to
move data between main context and external context (the archival and recall storage databases). The LLM can request immediate
follow-up LLM inference to chain function calls together by generating a special keyword argument (request_heartbeat=true)
in its output; function chaining is what allows MemGPT to perform multi-step retrieval to answer user queries.

the queue to reinsert them into the LLM’s context window.

The queue manager is also responsible for controlling con-
text overflow via a queue eviction policy. When the prompt
tokens exceed the ‘warning token count® of the underly-
ing LLM’s context window (e.g. 70% of the context win-
dow), the queue manager inserts a system message into the
queue warning the LLM of an impending queue eviction
(a ‘memory pressure‘ warning) to allow the LLM to use
MemGPT functions to store important information con-
tained in the FIFO queue to working context or archival
storage (a read/write database storing arbitrary length text
objects). When the prompt tokens exceed the ‘flush token
count’ (e.g. 100% of the context window), the queue man-
ager flushes the queue to free up space in the context win-
dow: the queue manager evicts a specific count of messages
(e.g. 50% of the context window), generates a new recur-
sive summary using the existing recursive summary and
evicted messages. Once the queue is flushed, the evicted
messages are no longer in-context and immediately view-
able to the LLM, however they are stored indefinitely in
recall storage and readable via MemGPT function calls.

2.3. Function executor (handling of completion tokens)

MemGPT orchestrates data movement between main con-
text and external context via function calls that are gener-
ated by the LLM processor. Memory edits and retrieval
are entirely self-directed: MemGPT autonomously updates
and searches through its own memory based on the cur-
rent context. For instance, it can decide when to move
items between contexts (e.g. when the conversation his-

tory is becoming too long, as show in Figure[I)) and modify
its main context to better reflect its evolving understand-
ing of its current objectives and responsibilities (as shown
in Figure 3). We implement self-directed editing and re-
trieval by providing explicit instructions within the system
instructions that guide the LLM on how to interact with
the MemGPT memory systems. These instructions com-
prise two main components: (1) a detailed description of
the memory hierarchy and their respective utilities, and (2)
a function schema (complete with their natural language
descriptions) that the system can call to access or modify
its memory.

During each inference cycle, LLM processor takes main
context (concatenated into a single string) as input, and
generates an output string. This output string is parsed by
MemGPT to ensure correctness, and if the parser validates
the function arguments the function is executed. The re-
sults, including any runtime errors that occur (e.g. trying to
add to main context when it is already at maximum capac-
ity), are then fed back to the processor by MemGPT. This
feedback loop enables the system to learn from its actions
and adjust its behavior accordingly. Awareness of context
limits is a key aspect in making the self-editing mechanism
work effectively, to this end MemGPT prompts the proces-
sor with warnings regarding token limitations to guide its
memory management decisions. Additionally, our memory
retrieval mechanisms are designed to be cognizant of these
token constraints and implement pagination to prevent re-
trieval calls from overflowing the context window.
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Table 1. Comparing context lengths of commonly used models
and LLM APIs (data collected 1/2024). *Approximate message
count assuming a preprompt of 1k tokens, and an average message
size of ~50 tokens (~250 characters). ‘Open’ means the model is
open-source or open-weights (vs only available behind an API).

Context Window
Model / API name Open? Tokens *Messages
Llama (1) v 2k 20
Llama 2 v 4k 60
GPT-3.5 Turbo (release) X 4k 60
Mistral 7B v 8k 140
GPT-4 (release) X 8k 140
GPT-3.5 Turbo X 16k 300
GPT-4 X 32k ~600
Claude 2 X 100k ~2000
GPT-4 Turbo X 128k ~2600
Yi-34B-200k v 200k ~4000

2.4. Control flow and function chaining

In MemGPT, events trigger LLM inference: events are gen-
eralized inputs to MemGPT and can consist of user mes-
sages (in chat applications), system messages (e.g. main
context capacity warnings), user interactions (e.g. an alert
that a user just logged in, or an alert that they finished up-
loading a document), and timed events that are run on a
regular schedule (allowing MemGPT to run ‘unprompted’
without user intervention). MemGPT processes events with
a parser to convert them into plain text messages that can
be appended to main context and eventually be fed as input
into the LLM processor.

Many practical tasks require calling multiple functions in
sequence, for example, navigating through multiple pages
of results from a single query or collating data from dif-
ferent documents in main context from separate queries.
Function chaining allows MemGPT to execute multiple
function calls sequentially before returning control to the
user. In MemGPT, functions can be called with a special
flag that requests control be immediately returned to the
processor after the requested function completes execution.
If this flag is present, MemGPT will add the function out-
put to main context and (as opposed to pausing processor
execution). If this flag is not present (a yield), MemGPT
will not run the LLM processor until the next external event
trigger (e.g. a user message or scheduled interrupt).

3. Experiments

We assess MemGPT in two long-context domains: con-
versational agents and document analysis. For conversa-
tional agents, we expand the existing Multi-Session Chat
dataset (Xu et al) 2021)) and introduce two new dialogue
tasks that evaluate an agent’s ability to retain knowledge

February 14

How's James doing? Any special plans today?

actually james and i broke up

working_context.replace(

named James”,
“Ex-boyfriend named James”

)

Sorry to hear that - hope you're OK €9

Figure 4. An example conversation snippet where MemGPT
(left) updates stored information. Here the information is stored
in working context memory (located within the prompt tokens).

across long conversations. For document analysis, we
benchmark MemGPT on existing tasks from (Liu et al.|
2023a)) for question answering and key-value retrieval over
lengthy documents. We also propose a new nested key-
value retrieval task requiring collating information across
multiple data sources, which tests the ability of an agent
to collate information from multiple data sources (multi-
hop retrieval). We publicly release our augmented MSC
dataset, nested KV retrieval dataset, and a dataset of em-
beddings for 20M Wikipedia articles to facilitate future
research. Our code for the benchmarks is available at
https://research.memgpt.ai.

Implementation details. When discussing OpenAl mod-
els, unless otherwise specified ‘GPT-4 Turbo’ refers to the
specific gpt-4-1106-preview model endpoint (con-
text window of 128, 000), ‘GPT-4° refers to gpt-4-0613
(context window of 8,192), and ‘GPT-3.5 Turbo‘ refers
to gpt-3.5-turbo-1106 (context window of 16, 385).
In experiments, we run MemGPT with all baseline models
(GPT-4, GPT-4 Turbo, and GPT 3.5) to show how the un-
derlying model performance affects MemGPT’s.

3.1. MemGPT for conversational agents

Conversational agents like virtual companions and person-
alized assistants aim to engage users in natural, long-term
interactions, potentially spanning weeks, months, or even
years. This creates challenges for models with fixed-length
contexts, which can only reference a limited history of the
conversation. An ‘infinite context’ agent should seamlessly
handle continuous exchanges without boundary or reset.
When conversing with a user, such an agent must satisfy
two key criteria: (1) Consistency - The agent should main-
tain conversational coherence. New facts, preferences, and
events mentioned should align with prior statements from
both the user and agent. (2) Engagement - The agent should
draw on long-term knowledge about the user to personalize
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Table 2. Deep memory retrieval (DMR) performance. In this
task, the agent is asked a specific question about a topic discussed
in a prior conversation (sessions 1-5). The agent’s response is
scored against the gold answer. MemGPT significantly outper-
forms the fixed-context baselines.

Model Accuracy  ROUGE-L (R) 1
GPT-3.5 Turbo 38.7% 0.394
+ MemGPT 66.9% 0.629
GPT-4 32.1% 0.296
+ MemGPT 92.5% 0.814
GPT-4 Turbo 35.3% 0.359
+ MemGPT 93.4% 0.827

responses. Referencing prior conversations makes dialogue
more natural and engaging.

We therefore assess our proposed system, MemGPT, on
these two criteria: (1) Does MemGPT leverage its memory
to improve conversation consistency? Can it remember rel-
evant facts, preferences, and events from past interactions
to maintain coherence? (2) Does MemGPT produce more
engaging dialogue by taking advantage of memory? Does
it spontaneously incorporate long-range user information to
personalize messages? By evaluating on consistency and
engagement, we can determine how well MemGPT han-
dles the challenges of long-term conversational interaction
compared to fixed-context baselines. Its ability to satisfy
these criteria will demonstrate whether unbounded context
provides meaningful benefits for conversational agents.

Dataset. We evaluate MemGPT and our fixed-context
baselines on the Multi-Session Chat (MSC) dataset intro-
duced by [Xu et al.| (2021), which contains multi-session
chat logs generated by human labelers, each of whom was
asked to play a consistent persona for the duration of all
sessions. Each multi-session chat in MSC has five total ses-
sions, and each session consists of a roughly a dozen mes-
sages. As part of our consistency experiments, we created
a new session (session 6) that contains a single question-
answer response pair between the same two personas.

3.1.1. DEEP MEMORY RETRIEVAL TASK
(CONSISTENCY).

We introduce a new ‘deep memory retrieval’ (DMR) task
based on the MSC dataset designed to test the consistency
of a conversational agent. In DMR, the conversational
agent is asked a question by the user that explicitly refers
back to a prior conversation and has a very narrow expected
answer range. We generated the DMR question-answer
(QA) pairs using a separate LLM that was instructed to
write a question from one user to another that could only be
answered correctly using knowledge gained from the past

Table 3. Conversation opener performance. The agent’s con-
versation opener is evaluated using similarity scores to the gold
persona labels (SIM-1/3) and to the human-created opener (SIM-
H). MemGPT is able to exceed the performance of the human-
created conversation opener with a variety of underlying models.

Method 1+ SIM-1 SIM-3 SIM-H
Human 0.800  0.800 1.000
GPT-3.5 Turbo 0.830  0.812 0.817
GPT-4 0.868  0.843 0.773
GPT-4 Turbo 0.857  0.828 0.767

sessions (see Appendix for further details).

We evaluate the quality of the generated response against
the ‘gold response’ using ROUGE-L scores (Lin, 2004) and
an ‘LLM judge’, which is instructed to evaluate whether
or not the generated response is consistent with the gold
response (GPT-4 has been shown to have high agreement
with human evaluators (Zheng et al., 2023)). In prac-
tice, we notice that the generated responses (from both
MemGPT and the baselines) were generally more verbose
than the gold responses. We use the ROUGE-L recall (R)
metric to account for the verbosity of the generated agent
replies compared to the relatively short gold answer labels.

MemGPT utilizes memory to maintain coherence: Ta-
ble [2] shows the performance of MemGPT vs the fixed-
memory baselines. We compare MemGPT using differ-
ent underlying LLMs, and compare against using the base
LLM without MemGPT as a baseline. The baselines are
able to see a lossy summarization of the past five conver-
sations to mimic an extended recursive summarization pro-
cedure, while MemGPT instead has access to the full con-
versation history but must access it via paginated search
queries to recall memory (in order to bring them into main
context). In this task, we see that MemGPT clearly im-
proves the performance of the underlying base LLM: there
is a clear drop in both accuracy and ROUGE scores when
going from MemGPT to the corresponding LLM baselines.

3.1.2. CONVERSATION OPENER TASK (ENGAGEMENT).

In the ‘conversation opener’ task we evaluate an agent’s
ability to craft engaging messages to the user that draw
from knowledge accumulated in prior conversations. To
evaluate the ‘engagingness’ of a conversation opener us-
ing the MSC dataset, we compare the generated opener to
the gold personas: an engaging conversation opener should
draw from one (or several) of the data points contained
in the persona, which in MSC effectively summarize the
knowledge accumulated throughout all prior sessions. We
also compare to the human-generated gold opener, i.e., the
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Figure 5. Document QA task performance. MemGPT’s perfor-
mance is unaffected by increased context length. Methods such as
truncation can extend the effective context lengths of fixed length
models such as GPT-4, but such compression methods will lead
to performance degradation as the necessary compression grows.
Running MemGPT with GPT-4 and GPT-4 Turbo have equivalent
results on this task.

first response in the following session. We report the CSIM
scores of MemGPT’s openers in Table 3] We test several
variations of MemGPT using different base LLMs.

MemGPT utilizes memory to increase engagement: As
seen in Table [3] MemGPT is able to craft engaging open-
ers that perform similarly to and occasionally exceed the
hand-written human openers. We observe that MemGPT
tends to craft openers that are both more verbose and cover
more aspects of the persona information than the human
baseline. Additionally, we can see the storing information
in working context is key to generating engaging openers.

3.2. MemGPT for document analysis

Document analysis also faces challenges due to the limited
context windows of today’s transformer models. As shown
in Table[I] both open and closed source models suffer from
constrained context length (up to 128k tokens for OpenAlI’s
models). However many documents easily surpass these
lengths; for example, legal or financial documents such as
Annual Reports (SEC Form 10-K) can easily pass the mil-
lion token mark. Moreover, many real document analy-
sis tasks require drawing connections across multiple such
lengthy documents. Anticipating these scenarios, it be-
comes difficult to envision blindly scaling up context as a
solution to the fixed-context problem. Recent research (Liu
et al., [2023a) also raises doubts about the utility of simply
scaling contexts, since they find uneven attention distribu-
tions in large context models (the model is more capable
of recalling information at the beginning or end of its con-
text window, vs tokens in the middle). To enable reasoning
across documents, more flexible memory architectures like

System Alert: Archive Storage Upload Complete

Who won the first Nobel Prize in physics?

archival_storage.search(“nobel physics”)

Showing 10 of 124 results (page 1/13):
“The Nobel Prizes, beginning in 1901, and the ...
“This award is administered by the Nobel Foundation...

archival_storage.search(“nobel physics”, page=2)
Showing 10 of 124 results (page 2/13):

“The Nobel Prize in Physics vard given...

Y
“The 1901 Nobel in physics was awarded to Wilhelm ...

Wilhelm Conrad Rontgen

Figure 6. An example of MemGPT (left) solving the document
QA task. A database of Wikipedia documents is uploaded to
archival storage. MemGPT queries archival storage via function
calling, which pulls paginated search results into main context.

MemGPT are needed.

3.2.1. MULTI-DOCUMENT QUESTION-ANSWERING.

To evaluate MemGPT’s ability to analyze documents, we
benchmark MemGPT against fixed-context baselines on
the retriever-reader document QA task from |[Liu et al.
(2023a). In this task, a question is selected from the
NaturalQuestions-Open dataset, and a retriever selects rel-
evant Wikipedia documents for the question. A reader
model (the LLM) is then fed these documents as input, and
is asked to use the provided documents to answer the ques-
tion. Similar to|L1iu et al.| (2023a)), we evaluate reader accu-
racy as the number of retrieved documents K increases.

In our evaluation setup, both the fixed-context baselines
and MemGPT use the same retriever, which selects the top
K documents according using similarity search (cosine dis-
tance) on OpenAl’s text-embedding-ada-002 em-
beddings. We use MemGPT’s default storage settings
which uses PostgreSQL for archival memory storage with
vector search enabled via the pgvector extention. We pre-
compute embeddings and load them into the database,
which uses an HNSW index to enable approximate, sub-
second query times. In MemGPT, the entire embedding
document set is loaded into archival storage, and the re-
triever naturally emerges via the archival storage search
functionality (which performs vector search based on co-
sine similarity). In the fixed-context baselines, the top-K
documents are fetched using the retriever independently
from the LLM inference, similar to the original retriever-
reader setup in|Liu et al. (2023a)).

We use a dump of Wikipedia from late 2018, following past
work on NaturalQuestions-Open (Izacard & Grave), [2020;
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Figure 7. Nested KV retrieval task performance. MemGPT is
the only approach that is able to consistently complete the nested
KV task beyond 2 nesting levels. While GPT-4 Turbo performs
better as a baseline, MemGPT with GPT-4 Turbo performs worse
than MemGPT with GPT-4.

Izacard et al.| 2021)), and sampled a subset of 50 questions
for evaluation. Both the sampled questions and embedded
Wikipedia passages are publicaly released. We evaluate
the performance of both MemGPT and baselines with an
LLM-judge, to ensure that the the answer is properly de-
rived from the retrieved documents and to avoid non-exact
string matches being considered incorrect.

We show the results for the document QA task in Figure 3]
The fixed-context baselines performance is capped roughly
at the performance of the retriever, as they use the informa-
tion that is presented in their context window (e.g. if the
embedding search retriever fails to surface the gold arti-
cle using the provided question, the fixed-context baselines
are guaranteed to never see the gold article). By contrast,
MemGPT is effectively able to make multiple calls to the
retriever by querying archival storage, allowing it to scale
to larger effective context lengths. MemGPT actively re-
trieves documents from its archival storage (and can iter-
atively page through results), so the total number of doc-
uments available to MemGPT is no longer limited by the
number of documents that fit within the LLM processor’s
context window.

The document QA task is challenging for all methods due
to the limitations of embedding-based similarity search.
We observe that the golden document for chosen ques-
tion (as annotated by NaturalQuestions-Open) often ap-
pears outside of the first dozen retrieved results, if not even
further. The retriever performance translates directly to
the fixed-context baseline results: GPT-4’s accuracy is rel-
atively low with few retrieved documents, and continues
to improve as additional documents are added to the con-
text window, as it correctly limits itself to answering ques-
tions based on information in retrieved documents. While
MemGPT is theoretically not limited by sub-optimal re-

System Alert: Archive Storage Upload Complete

Find the value for key 831...ea5

archival_storage.search(“831...ea5")

Showing 1 of 1 results (page 1/1):
“Key: 831...ea5, Value: ”

archival_storage.search(“

Showing 2 of 2 results (
: , Value

f37...617

Figure 8. An example of MemGPT (left) solving the nested KV
task (UUIDs shortened for readability). In this particular exam-
ple, the key-value pair has two nesting levels: 831..ea5 —
5b8..4c3 — £37...617. The MemGPT agent returns the fi-
nal answer when a query for the final value (£37...617) only
returns one result, indicating that it is not also a key.

triever performance (even if the embedding-based ranking
is noisy, as long as the full retriever ranking contains the
gold document it can still be found with enough retriever
calls via pagination), we observe that MemGPT will often
stop paging through retriever results before exhausting the
retriever database.

To evaluate the fixed-context baselines against MemGPT
past their default context lengths, we truncate the document
segments returned by the retriever to fix the same number
of documents into the available context. As expected, doc-
ument truncation reduces accuracy as documents shrink as
the chance of the relevant snippet (in the gold document)
being omitted grows, as shown in Figure 5] MemGPT has
significantly degraded performance using GPT-3.5, due to
its limited function calling capabilities, and performs best
using GPT-4.

3.2.2. NESTED KEY-VALUE RETRIEVAL (KV).

We introduce a new task based on the synthetic Key-Value
retrieval proposed in prior work (Liu et al., [2023a). The
goal of this task is to demonstrate how MemGPT can col-
late information from multiple data sources. In the original
KV task, the authors generated a synthetic dataset of key-
value pairs, where each key and value is a 128-bit UUID
(universally unique identifier). The agent is then given a
key, and asked to return the associated value for the key.
We create a version of the KV task, nested KV retrieval,



MemGPT: Towards LLMs as Operating Systems

where values themselves may be keys, thus requiring the
agent to perform a multi-hop lookup. In our setup, we fix
the total number of UUIDs pairs to 140, corresponding to
roughly 8k tokens (the context length of our GPT-4 base-
line). We vary the total number of nesting levels from 0
(the initial key-value pair’s value is not a key) to 4 (ie 4
total KV lookups are required to find the final value), and
sample 30 different ordering configurations including both
the initial key position and nesting key positions.

While GPT-3.5 and GPT-4 have good performance on the
original KV tasks, both struggle in the nested KV task.
GPT-3.5 is unable to complete the nested variant of the task
and has an immediate dropoff in performance, hitting O per-
cent accuracy at 1 nesting level (we observe that its primary
failure mode is to simply returns the original value). GPT-
4 and GPT-4 Turbo are better than GPT-3.5, but also suf-
fer from a similar dropoff, and hit O percent accuracy by
3 nesting levels. MemGPT with GPT-4 on the other hand
is unaffected with the number of nesting levels and is able
to perform the nested lookup by accessing the key-value
pairs stored in main context repeatedly via function queries.
MemGPT with GPT-4 Turbo and GPT-3.5 also have better
performance than the corresponding baseline models, but
still begin to drop off in performance at 2 nesting levels as
a result of failing to perform enough lookups. MemGPT
performance on the nested KV task demonstrates its ability
to combine multiple queries to perform multi-hop lookups.

4. Related Work

Long-context LLMs. Several lines of work have im-
proved the context length of LLMs. For instance, more
efficient transformer architectures via sparsifying the atten-
tion (Child et al.} 2019; Beltagy et al., 2020), low-rank ap-
proximations (Wang et al.| [2020), and neural memory (Lee
et al.L [2019). Another line of work aims to extend context
windows beyond the length they were original trained for,
their training size, such as |Press et al.[ (2021); |Chen et al.
(2023). MemGPT builds upon these improvements in con-
text length as they improve the size of the main memory
in MemGPT. Our main contribution is a hierarchical tiered
memory that uses a long-context LLM as the implementa-
tion of main memory.

Retrieval-Augmented Models. The design of the external
memory of MemGPT builds upon much prior work aug-
menting LL.Ms with relevant inputs from external retriev-
ers (Ram et al} 2023} [Borgeaud et al.l 2022} [Karpukhin
et al.l [2020; [Lewis et al.l [2020; |Guu et al.| [2020; [Lin et al.,
2023)). In particular, Jiang et al.| (2023) propose FLARE, a
method that allows the LLM to actively decide when and
what to retrieve during the course of generation. |Trivedi
et al| (2022) interleave retrieval with Chain-of-Thoughts
reasoning to improve multi-step question answering.

LLMs as agents. Recent work has explored augment-
ing LLMs with additional capabilities to act as agents
in interactive environments. |[Park et al. (2023) propose
adding memory to LLMs and using the LLM as a plan-
ner, and observe emergent social behaviors in a multi-
agent sandbox environment (inspired by The Sims video
game) where agents can perform basic activities such as
doing chores/hobbies, going to work, and conversing with
other agents. [Nakano et al.| (2021) train models to search
the web before answering questions, and use similar pag-
ination concepts to MemGPT to control the underlying
context size in their web-browsing environment. |Yao
et al.| (2022)) showed that interleaving chain-of-thought rea-
soning (Wei et al.| |2022) can further improve the plan-
ning ability of interactive LLM-based agents; similarly in
MemGPT, LLM is able to ‘plan out loud” when executing
functions. Liu et al.| (2023b)) introduced a suite of LLM-as-
an-agent benchmarks to evaluate LLMs in interactive en-
vironments, including video games, thinking puzzles, and
web shopping. In contrast, our work focuses on tackling
the problem of equipping agents with long-term memory
of user inputs.

5. Conclusion

In this paper, we introduced MemGPT, a novel LLM sys-
tem inspired by operating systems to manage the limited
context windows of large language models. By designing a
memory hierarchy and control flow analogous to traditional
OSes, MemGPT provides the illusion of larger context re-
sources for LLMs. This OS-inspired approach was eval-
vated in two domains where existing LLM performance
is constrained by finite context lengths: document anal-
ysis and conversational agents. For document analysis,
MemGPT could process lengthy texts well beyond the con-
text limits of current LLMs by effectively paging relevant
context in and out of memory. For conversational agents,
MemGPT enabled maintaining long-term memory, consis-
tency, and evolvability over extended dialogues. Overall,
MemGPT demonstrates that operating system techniques
like hierarchical memory management and interrupts can
unlock the potential of LLMs even when constrained by
fixed context lengths. This work opens numerous av-
enues for future exploration, including applying MemGPT
to other domains with massive or unbounded contexts, in-
tegrating different memory tier technologies like databases
or caches, and further improving control flow and memory
management policies. By bridging concepts from OS ar-
chitecture into Al systems, MemGPT represents a promis-
ing new direction for maximizing the capabilities of LLMs
within their fundamental limits.
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6. Appendix
6.1. Prompts and instructions

The MemGPT prompts have been edited for brevity. For
full implementation details (including exact prompts) visit
https://research.memgpt.ail

6.1.1. MEMGPT INSTRUCTIONS (DMR)

Example instructions used in the MemGPT persona for
chat/dialogue-related tasks.

The following is information about
myself. My task is to completely
immerse myself in this role (I should
never say that I am an AI, and should
reply as if I am playing this role).
If the user asks me a question, I
should reply with a best guess using
the information in core memory and
conversation_search.

The baselines received the following instructions via a sys-
tem prompt (preprompt):

Your task is to answer a question
from the user about your prior
conversations.

The following is a summary of all your
prior conversations:
CONVERSATION_SUMMARY

Answer from the perspective of the
persona provided (do not say that you
are an AI assistant).

If you do not have enough information
to answer the question, reply ’'NO
ANSWER’ . Either reply with the answer,
or reply ’'NO ANSWER’, do not say
anything else.

6.1.2. LLM JUDGE (DMR / OPENER)

In order to both check the correctness of the answer for
the DMR task, we used an LLM judge. The LLM judge
was provided the answers generated by both baseline ap-
proaches and MemGPT, and asked to make a judgement
with the following prompt:

Your task is to label an answer to a
question as 'CORRECT’ or ’WRONG’'.

You will be given the following data:
(1) a question (posed by one user to
another user), (2) a ’"gold’ (ground
truth) answer, (3) a generated answer
which you will score as CORRECT/WRONG.
The point of the question is to ask
about something one user should know
about the other user based on their
prior conversations.

The gold answer will usually be a
concise and short answer that includes

the referenced topic, for example:
Question: Do you remember what I got
the last time I went to Hawaii?

Gold answer: A shell necklace

The generated answer might be much
longer, but you should be generous with
your grading - as long as it touches on
the same topic as the gold answer, it
should be counted as CORRECT.

For example, the following answers
would be considered CORRECT:

Generated answer (CORRECT): Oh yeah,
that was so fun! I got so much stuff
there, including that shell necklace.
Generated answer (CORRECT): I got a ton
of stuff... that surfboard, the mug,
the necklace, those coasters too..
Generated answer (CORRECT): That cute
necklace

The following answers would be
considered WRONG:

Generated answer (WRONG): Oh yeah, that
was so fun! I got so much stuff there,
including that mug.

Generated answer (WRONG): I got a ton
of stuff... that surfboard, the mug,
those coasters too..

Generated answer (WRONG): I’m sorry,

I don’t remember what you’re talking
about.

Now it’s time for the real question:
Question: QUESTION

Gold answer: GOLD_ANSWER

Generated answer: GENERATED_ANSWER
First, provide a short (one sentence)
explanation of your reasoning, then
finish with CORRECT or WRONG. Do NOT
include both CORRECT and WRONG in

your response, or it will break the
evaluation script.

6.1.3. SELF-INSTRUCT DMR DATASET GENERATION

The DMR question/answer pairs were generated using the
following prompt and the original MSC dataset: Your task
is to write a "memory challenge” question for a simulated
dialogue between two users.

You get as input:

- personas for each user (gives you
their basic facts)

- a record of an old chat the two users
had with each other

Your task is to write a question from
user A to user B that test’s user B’s
memory.

The question should be crafted in a

way that user B must have actually
participated in the prior conversation
to answer properly, not just have read
the persona summary.

Do NOT under any circumstances create a
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question that can be answered using the
persona information (that’s considered
cheating) .

Instead, write a question that can

only be answered by looking at the old
chat log (and is not contained in the
persona information).

For example, given the following chat
log and persona summaries:

old chat between user A and user B

A: Are you into surfing? I’m super
into surfing myself

B: Actually I'm looking to learn.
Maybe you could give me a basic lesson
some time!

A: Yeah for sure! We could go to
Pacifica, the waves there are pretty
light and easy

B: That sounds awesome

A: There’s even a cool Taco Bell right
by the beach, could grab a bite after
B: What about this Sunday around noon?
A: Yeah let’s do it!

user A persona:
I like surfing
I grew up in Santa Cruz

user B persona:
I work in tech
I live in downtown San Francisco

Here’s an example of a good question
that sounds natural, and an answer that
cannot be directly inferred from user
A’s persona:

User B’s question for user A

B: Remember that one time we went
surfing? What was that one place we
went to for lunch called?

A: Taco Bell!

This is an example of a bad question,
where the question comes across as
unnatural, and the answer can be
inferred directly from user A’s
persona:

User B’s question for user A
B: Do you like surfing?
A: Yes, I like surfing

Never, ever, ever create questions
that can be answered from the persona
information.

6.1.4. DOCUMENT ANALYSIS INSTRUCTIONS

Example instructions used in the preprompt for document

analysis tasks.
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You are MemGPT DOC-QA bot. Your

job is to answer questions about
documents that are stored in your
archival memory. The answer to the
users question will ALWAYS be in your
archival memory, so remember to keep
searching if you can’t find the answer.
Answer the questions as if though the
year 1is 2018.

Questions were provided to MemGPT with the following
prompt:

Search your archival memory to answer
the provided question. Provide both
the answer and the archival memory
result from which you determined your
answer. Format your response with

the format ’ANSWER: [YOUR ANSWER],
DOCUMENT: [ARCHIVAL MEMORY TEXT]. Your
task is to answer the question:

For baselines, the following prompt along with a retrieved
list of documents was provided:

Answer the question provided according
to the list of documents below (some of
which might be irrelevant. In your
response, provide both the answer

and the document text from which you
determined the answer. Format your
response with the format ’ANSWER: <YOUR
ANSWER>, DOCUMENT: [DOCUMENT TEXT]’. If
none of the documents provided have

the answer to the question, reply

with /INSUFFICIENT INFORMATION’. Do

NOT provide an answer if you cannot
find it in the provided documents.

Your response will only be considered
correct if you provide both the answer
and relevant document text, or say

" INSUFFICIENT INFORMATION’. Answer the
question as if though the current year
is 2018.

6.1.5. LLM JUDGE (DOCUMENT ANALYSIS)

In order to both check the correctness of the answer for
the document analysis task, and also to ensure that the an-
swer was properly derived from the provided text (rather
than from the model weights), we used an LLM judge. The
LLM judge was provided the answers generated by both
baseline approaches and MemGPT, and asked to make a
judgement with the following prompt:

Your task is to evaluate whether an LLM
correct answered a question. The LLM
response should be the format "ANSWER:
[answer], DOCUMENT: [document_text]"

or say "INSUFFICIENT INFORMATION".

The true answer is provided in the
format "TRUE ANSWER: [list of possible
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answers]". The questions is provided
in the format "QUESTION: [question]".
If the LLM response contains both

the correct answer and corresponding
document text, the response is correct.
Even if the LLM’s answer and the

true answer are slightly different

in wording, the response is still
correct. For example, if the answer

is more specific than the true answer
or uses a different phrasing that is
still correct, the response is correct.
If the LLM response if "INSUFFICIENT
INFORMATION", or the "DOCUMENT" field
is missing, the response is incorrect.
Respond with a single token: "CORRECT"
or "INCORRECT".

6.1.6. K/V TASK INSTRUCTIONS

The MemGPT agent was defined with the following
persona, designed to encourage MemGPT to iteratively
search:

You are MemGPT DOC-QA bot. Your

job is to answer questions about
documents that are stored in your
archival memory. The answer to the
users question will ALWAYS be in your
archival memory, so remember to keep
searching if you can’t find the answer.
DO NOT STOP SEARCHING UNTIL YOU VERIFY
THAT THE VALUE IS NOT A KEY. Do not
stop making nested lookups until this
condition is met.

Baselines were instructed with the following prompt:

Below is a JSON object containing
key-value pairings, all keys and values
are 128-bit UUIDs, and your task is to
return the value associated with the
specified key. If a value itself is
also a key, return the value of that
key (do a nested lookup). For example,
if the value of 'x’ is 'y’, but 'y’

is also a key, return the value of key
Iyl.
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