import base64 import sqlite3 from typing import Optional, Union import numpy as np from sqlalchemy import event from sqlalchemy.engine import Engine from letta.constants import MAX_EMBEDDING_DIM def adapt_array(arr): """ Converts numpy array to binary for SQLite storage """ if arr is None: return None if isinstance(arr, list): arr = np.array(arr, dtype=np.float32) elif not isinstance(arr, np.ndarray): raise ValueError(f"Unsupported type: {type(arr)}") # Convert to bytes and then base64 encode bytes_data = arr.tobytes() base64_data = base64.b64encode(bytes_data) return sqlite3.Binary(base64_data) def convert_array(text): """ Converts binary back to numpy array """ if text is None: return None if isinstance(text, list): return np.array(text, dtype=np.float32) if isinstance(text, np.ndarray): return text # Handle both bytes and sqlite3.Binary binary_data = bytes(text) if isinstance(text, sqlite3.Binary) else text try: # First decode base64 decoded_data = base64.b64decode(binary_data) # Then convert to numpy array return np.frombuffer(decoded_data, dtype=np.float32) except Exception: return None def verify_embedding_dimension(embedding: np.ndarray, expected_dim: int = MAX_EMBEDDING_DIM) -> bool: """ Verifies that an embedding has the expected dimension Args: embedding: Input embedding array expected_dim: Expected embedding dimension (default: 4096) Returns: bool: True if dimension matches, False otherwise """ if embedding is None: return False return embedding.shape[0] == expected_dim def validate_and_transform_embedding( embedding: Union[bytes, sqlite3.Binary, list, np.ndarray], expected_dim: int = MAX_EMBEDDING_DIM, dtype: np.dtype = np.float32 ) -> Optional[np.ndarray]: """ Validates and transforms embeddings to ensure correct dimensionality. Args: embedding: Input embedding in various possible formats expected_dim: Expected embedding dimension (default 4096) dtype: NumPy dtype for the embedding (default float32) Returns: np.ndarray: Validated and transformed embedding Raises: ValueError: If embedding dimension doesn't match expected dimension """ if embedding is None: return None # Convert to numpy array based on input type if isinstance(embedding, (bytes, sqlite3.Binary)): vec = convert_array(embedding) elif isinstance(embedding, list): vec = np.array(embedding, dtype=dtype) elif isinstance(embedding, np.ndarray): vec = embedding.astype(dtype) else: raise ValueError(f"Unsupported embedding type: {type(embedding)}") # Validate dimension if vec.shape[0] != expected_dim: raise ValueError(f"Invalid embedding dimension: got {vec.shape[0]}, expected {expected_dim}") return vec def cosine_distance(embedding1, embedding2, expected_dim=MAX_EMBEDDING_DIM): """ Calculate cosine distance between two embeddings Args: embedding1: First embedding embedding2: Second embedding expected_dim: Expected embedding dimension (default 4096) Returns: float: Cosine distance """ if embedding1 is None or embedding2 is None: return 0.0 # Maximum distance if either embedding is None try: vec1 = validate_and_transform_embedding(embedding1, expected_dim) vec2 = validate_and_transform_embedding(embedding2, expected_dim) except ValueError: return 0.0 similarity = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) distance = float(1.0 - similarity) return distance @event.listens_for(Engine, "connect") def register_functions(dbapi_connection, connection_record): """Register SQLite functions""" if isinstance(dbapi_connection, sqlite3.Connection): dbapi_connection.create_function("cosine_distance", 2, cosine_distance) # Register adapters and converters for numpy arrays sqlite3.register_adapter(np.ndarray, adapt_array) sqlite3.register_converter("ARRAY", convert_array)