MemGPT/letta/local_llm/llamacpp/api.py
Sarah Wooders 85faf5f474
chore: migrate package name to letta (#1775)
Co-authored-by: Charles Packer <packercharles@gmail.com>
Co-authored-by: Shubham Naik <shubham.naik10@gmail.com>
Co-authored-by: Shubham Naik <shub@memgpt.ai>
2024-09-23 09:15:18 -07:00

59 lines
2.4 KiB
Python

from urllib.parse import urljoin
from letta.local_llm.settings.settings import get_completions_settings
from letta.local_llm.utils import count_tokens, post_json_auth_request
LLAMACPP_API_SUFFIX = "/completion"
def get_llamacpp_completion(endpoint, auth_type, auth_key, prompt, context_window, grammar=None):
"""See https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md for instructions on how to run the LLM web server"""
from letta.utils import printd
prompt_tokens = count_tokens(prompt)
if prompt_tokens > context_window:
raise Exception(f"Request exceeds maximum context length ({prompt_tokens} > {context_window} tokens)")
# Settings for the generation, includes the prompt + stop tokens, max length, etc
settings = get_completions_settings()
request = settings
request["prompt"] = prompt
# Set grammar
if grammar is not None:
request["grammar"] = grammar
if not endpoint.startswith(("http://", "https://")):
raise ValueError(f"Provided OPENAI_API_BASE value ({endpoint}) must begin with http:// or https://")
try:
# NOTE: llama.cpp server returns the following when it's out of context
# curl: (52) Empty reply from server
URI = urljoin(endpoint.strip("/") + "/", LLAMACPP_API_SUFFIX.strip("/"))
response = post_json_auth_request(uri=URI, json_payload=request, auth_type=auth_type, auth_key=auth_key)
if response.status_code == 200:
result_full = response.json()
printd(f"JSON API response:\n{result_full}")
result = result_full["content"]
else:
raise Exception(
f"API call got non-200 response code (code={response.status_code}, msg={response.text}) for address: {URI}."
+ f" Make sure that the llama.cpp server is running and reachable at {URI}."
)
except:
# TODO handle gracefully
raise
# Pass usage statistics back to main thread
# These are used to compute memory warning messages
completion_tokens = result_full.get("tokens_predicted", None)
total_tokens = prompt_tokens + completion_tokens if completion_tokens is not None else None
usage = {
"prompt_tokens": prompt_tokens, # can grab from "tokens_evaluated", but it's usually wrong (set to 0)
"completion_tokens": completion_tokens,
"total_tokens": total_tokens,
}
return result, usage