MemGPT/letta/settings.py

267 lines
8.9 KiB
Python

import os
from pathlib import Path
from typing import Optional
from pydantic import AliasChoices, Field
from pydantic_settings import BaseSettings, SettingsConfigDict
from letta.local_llm.constants import DEFAULT_WRAPPER_NAME
class ToolSettings(BaseSettings):
composio_api_key: Optional[str] = None
# E2B Sandbox configurations
e2b_api_key: Optional[str] = None
e2b_sandbox_template_id: Optional[str] = None # Updated manually
# Tavily search
tavily_api_key: Optional[str] = None
# Local Sandbox configurations
tool_exec_dir: Optional[str] = None
tool_sandbox_timeout: float = 180
tool_exec_venv_name: Optional[str] = None
tool_exec_autoreload_venv: bool = True
# MCP settings
mcp_connect_to_server_timeout: float = 30.0
mcp_list_tools_timeout: float = 30.0
mcp_execute_tool_timeout: float = 60.0
mcp_read_from_config: bool = True # if False, will throw if attempting to read/write from file
class SummarizerSettings(BaseSettings):
model_config = SettingsConfigDict(env_prefix="letta_summarizer_", extra="ignore")
# Controls if we should evict all messages
# TODO: Can refactor this into an enum if we have a bunch of different kinds of summarizers
evict_all_messages: bool = False
# The maximum number of retries for the summarizer
# If we reach this cutoff, it probably means that the summarizer is not compressing down the in-context messages any further
# And we throw a fatal error
max_summarizer_retries: int = 3
# When to warn the model that a summarize command will happen soon
# The amount of tokens before a system warning about upcoming truncation is sent to Letta
memory_warning_threshold: float = 0.75
# Whether to send the system memory warning message
send_memory_warning_message: bool = False
# The desired memory pressure to summarize down to
desired_memory_token_pressure: float = 0.3
# The number of messages at the end to keep
# Even when summarizing, we may want to keep a handful of recent messages
# These serve as in-context examples of how to use functions / what user messages look like
keep_last_n_messages: int = 0
class ModelSettings(BaseSettings):
model_config = SettingsConfigDict(env_file=".env", extra="ignore")
global_max_context_window_limit: int = 32000
# env_prefix='my_prefix_'
# when we use /completions APIs (instead of /chat/completions), we need to specify a model wrapper
# the "model wrapper" is responsible for prompt formatting and function calling parsing
default_prompt_formatter: str = DEFAULT_WRAPPER_NAME
# openai
openai_api_key: Optional[str] = None
openai_api_base: str = Field(
default="https://api.openai.com/v1",
# NOTE: We previously used OPENAI_API_BASE, but this was deprecated in favor of OPENAI_BASE_URL
# preferred first, fallback second
# env=["OPENAI_BASE_URL", "OPENAI_API_BASE"], # pydantic-settings v2
validation_alias=AliasChoices("OPENAI_BASE_URL", "OPENAI_API_BASE"), # pydantic-settings v1
)
# deepseek
deepseek_api_key: Optional[str] = None
# xAI / Grok
xai_api_key: Optional[str] = None
# groq
groq_api_key: Optional[str] = None
# Bedrock
aws_access_key: Optional[str] = None
aws_secret_access_key: Optional[str] = None
aws_region: Optional[str] = None
bedrock_anthropic_version: Optional[str] = "bedrock-2023-05-31"
# anthropic
anthropic_api_key: Optional[str] = None
anthropic_max_retries: int = 3
# ollama
ollama_base_url: Optional[str] = None
# azure
azure_api_key: Optional[str] = None
azure_base_url: Optional[str] = None
# We provide a default here, since usually people will want to be on the latest API version.
azure_api_version: Optional[str] = (
"2024-09-01-preview" # https://learn.microsoft.com/en-us/azure/ai-services/openai/api-version-deprecation
)
# google ai
gemini_api_key: Optional[str] = None
gemini_base_url: str = "https://generativelanguage.googleapis.com/"
# google vertex
google_cloud_project: Optional[str] = None
google_cloud_location: Optional[str] = None
# together
together_api_key: Optional[str] = None
# vLLM
vllm_api_base: Optional[str] = None
# lmstudio
lmstudio_base_url: Optional[str] = None
# openllm
openllm_auth_type: Optional[str] = None
openllm_api_key: Optional[str] = None
# disable openapi schema generation
disable_schema_generation: bool = False
env_cors_origins = os.getenv("ACCEPTABLE_ORIGINS")
cors_origins = [
"http://letta.localhost",
"http://localhost:8283",
"http://localhost:8083",
"http://localhost:3000",
"http://localhost:4200",
]
# attach the env_cors_origins to the cors_origins if it exists
if env_cors_origins:
cors_origins.extend(env_cors_origins.split(","))
# read pg_uri from ~/.letta/pg_uri or set to none, this is to support Letta Desktop
default_pg_uri = None
## check if --use-file-pg-uri is passed
import sys
if "--use-file-pg-uri" in sys.argv:
try:
with open(Path.home() / ".letta/pg_uri", "r") as f:
default_pg_uri = f.read()
print(f"Read pg_uri from ~/.letta/pg_uri: {default_pg_uri}")
except FileNotFoundError:
pass
class Settings(BaseSettings):
model_config = SettingsConfigDict(env_prefix="letta_", extra="ignore")
letta_dir: Optional[Path] = Field(Path.home() / ".letta", env="LETTA_DIR")
debug: Optional[bool] = False
cors_origins: Optional[list] = cors_origins
# database configuration
pg_db: Optional[str] = None
pg_user: Optional[str] = None
pg_password: Optional[str] = None
pg_host: Optional[str] = None
pg_port: Optional[int] = None
pg_uri: Optional[str] = default_pg_uri # option to specify full uri
pg_pool_size: int = 25 # Concurrent connections
pg_max_overflow: int = 10 # Overflow limit
pg_pool_timeout: int = 30 # Seconds to wait for a connection
pg_pool_recycle: int = 1800 # When to recycle connections
pg_echo: bool = False # Logging
pool_pre_ping: bool = True # Pre ping to check for dead connections
pool_use_lifo: bool = True
disable_sqlalchemy_pooling: bool = False
# multi agent settings
multi_agent_send_message_max_retries: int = 3
multi_agent_send_message_timeout: int = 20 * 60
multi_agent_concurrent_sends: int = 50
# telemetry logging
verbose_telemetry_logging: bool = False
otel_exporter_otlp_endpoint: Optional[str] = None # otel default: "http://localhost:4317"
disable_tracing: bool = False
llm_api_logging: bool = True
# uvicorn settings
uvicorn_workers: int = 1
uvicorn_reload: bool = False
uvicorn_timeout_keep_alive: int = 5
# event loop parallelism
event_loop_threadpool_max_workers: int = 43
# experimental toggle
use_experimental: bool = False
use_vertex_structured_outputs_experimental: bool = False
use_vertex_async_loop_experimental: bool = False
experimental_enable_async_db_engine: bool = False
experimental_skip_rebuild_memory: bool = False
# LLM provider client settings
httpx_max_retries: int = 5
httpx_timeout_connect: float = 10.0
httpx_timeout_read: float = 60.0
httpx_timeout_write: float = 30.0
httpx_timeout_pool: float = 10.0
httpx_max_connections: int = 500
httpx_max_keepalive_connections: int = 500
httpx_keepalive_expiry: float = 120.0
# cron job parameters
enable_batch_job_polling: bool = False
poll_running_llm_batches_interval_seconds: int = 5 * 60
poll_lock_retry_interval_seconds: int = 5 * 60
batch_job_polling_lookback_weeks: int = 2
batch_job_polling_batch_size: Optional[int] = None
@property
def letta_pg_uri(self) -> str:
if self.pg_uri:
return self.pg_uri
elif self.pg_db and self.pg_user and self.pg_password and self.pg_host and self.pg_port:
return f"postgresql+pg8000://{self.pg_user}:{self.pg_password}@{self.pg_host}:{self.pg_port}/{self.pg_db}"
else:
return f"postgresql+pg8000://letta:letta@localhost:5432/letta"
# add this property to avoid being returned the default
# reference: https://github.com/letta-ai/letta/issues/1362
@property
def letta_pg_uri_no_default(self) -> str:
if self.pg_uri:
return self.pg_uri
elif self.pg_db and self.pg_user and self.pg_password and self.pg_host and self.pg_port:
return f"postgresql+pg8000://{self.pg_user}:{self.pg_password}@{self.pg_host}:{self.pg_port}/{self.pg_db}"
else:
return None
class TestSettings(Settings):
model_config = SettingsConfigDict(env_prefix="letta_test_", extra="ignore")
letta_dir: Optional[Path] = Field(Path.home() / ".letta/test", env="LETTA_TEST_DIR")
# singleton
settings = Settings(_env_parse_none_str="None")
test_settings = TestSettings()
model_settings = ModelSettings()
tool_settings = ToolSettings()
summarizer_settings = SummarizerSettings()