mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00

Co-authored-by: Andy Li <55300002+cliandy@users.noreply.github.com> Co-authored-by: Kevin Lin <klin5061@gmail.com> Co-authored-by: Sarah Wooders <sarahwooders@gmail.com> Co-authored-by: jnjpng <jin@letta.com> Co-authored-by: Matthew Zhou <mattzh1314@gmail.com>
207 lines
6.3 KiB
Python
207 lines
6.3 KiB
Python
import json
|
||
import os
|
||
import threading
|
||
import time
|
||
import uuid
|
||
from typing import List
|
||
|
||
import pytest
|
||
import requests
|
||
from dotenv import load_dotenv
|
||
from letta_client import Letta, MessageCreate
|
||
from letta_client.types import ToolReturnMessage
|
||
|
||
from letta.schemas.agent import AgentState
|
||
from letta.schemas.llm_config import LLMConfig
|
||
from letta.settings import settings
|
||
|
||
# ------------------------------
|
||
# Fixtures
|
||
# ------------------------------
|
||
|
||
|
||
@pytest.fixture(scope="module")
|
||
def server_url() -> str:
|
||
"""
|
||
Provides the URL for the Letta server.
|
||
If LETTA_SERVER_URL is not set, starts the server in a background thread
|
||
and polls until it’s accepting connections.
|
||
"""
|
||
|
||
def _run_server() -> None:
|
||
load_dotenv()
|
||
from letta.server.rest_api.app import start_server
|
||
|
||
start_server(debug=True)
|
||
|
||
url: str = os.getenv("LETTA_SERVER_URL", "http://localhost:8283")
|
||
|
||
if not os.getenv("LETTA_SERVER_URL"):
|
||
thread = threading.Thread(target=_run_server, daemon=True)
|
||
thread.start()
|
||
|
||
# Poll until the server is up (or timeout)
|
||
timeout_seconds = 30
|
||
deadline = time.time() + timeout_seconds
|
||
while time.time() < deadline:
|
||
try:
|
||
resp = requests.get(url + "/v1/health")
|
||
if resp.status_code < 500:
|
||
break
|
||
except requests.exceptions.RequestException:
|
||
pass
|
||
time.sleep(0.1)
|
||
else:
|
||
raise RuntimeError(f"Could not reach {url} within {timeout_seconds}s")
|
||
|
||
temp = settings.use_experimental
|
||
settings.use_experimental = True
|
||
yield url
|
||
settings.use_experimental = temp
|
||
|
||
|
||
@pytest.fixture(scope="module")
|
||
def client(server_url: str) -> Letta:
|
||
"""
|
||
Creates and returns a synchronous Letta REST client for testing.
|
||
"""
|
||
client_instance = Letta(base_url=server_url)
|
||
yield client_instance
|
||
|
||
|
||
@pytest.fixture(scope="module")
|
||
def agent_state(client: Letta) -> AgentState:
|
||
"""
|
||
Creates and returns an agent state for testing with a pre-configured agent.
|
||
The agent is named 'supervisor' and is configured with base tools and the roll_dice tool.
|
||
"""
|
||
client.tools.upsert_base_tools()
|
||
|
||
send_message_tool = client.tools.list(name="send_message")[0]
|
||
run_code_tool = client.tools.list(name="run_code")[0]
|
||
web_search_tool = client.tools.list(name="web_search")[0]
|
||
agent_state_instance = client.agents.create(
|
||
name="supervisor",
|
||
include_base_tools=False,
|
||
tool_ids=[send_message_tool.id, run_code_tool.id, web_search_tool.id],
|
||
model="openai/gpt-4o",
|
||
embedding="letta/letta-free",
|
||
tags=["supervisor"],
|
||
)
|
||
yield agent_state_instance
|
||
|
||
client.agents.delete(agent_state_instance.id)
|
||
|
||
|
||
# ------------------------------
|
||
# Helper Functions and Constants
|
||
# ------------------------------
|
||
|
||
|
||
def get_llm_config(filename: str, llm_config_dir: str = "tests/configs/llm_model_configs") -> LLMConfig:
|
||
filename = os.path.join(llm_config_dir, filename)
|
||
config_data = json.load(open(filename, "r"))
|
||
llm_config = LLMConfig(**config_data)
|
||
return llm_config
|
||
|
||
|
||
USER_MESSAGE_OTID = str(uuid.uuid4())
|
||
all_configs = [
|
||
"openai-gpt-4o-mini.json",
|
||
]
|
||
requested = os.getenv("LLM_CONFIG_FILE")
|
||
filenames = [requested] if requested else all_configs
|
||
TESTED_LLM_CONFIGS: List[LLMConfig] = [get_llm_config(fn) for fn in filenames]
|
||
|
||
TEST_LANGUAGES = ["Python", "Javascript", "Typescript"]
|
||
EXPECTED_INTEGER_PARTITION_OUTPUT = "190569292"
|
||
|
||
|
||
# Reference implementation in Python, to embed in the user prompt
|
||
REFERENCE_CODE = """\
|
||
def reference_partition(n):
|
||
partitions = [1] + [0] * (n + 1)
|
||
for k in range(1, n + 1):
|
||
for i in range(k, n + 1):
|
||
partitions[i] += partitions[i - k]
|
||
return partitions[n]
|
||
"""
|
||
|
||
|
||
def reference_partition(n: int) -> int:
|
||
# Same logic, used to compute expected result in the test
|
||
partitions = [1] + [0] * (n + 1)
|
||
for k in range(1, n + 1):
|
||
for i in range(k, n + 1):
|
||
partitions[i] += partitions[i - k]
|
||
return partitions[n]
|
||
|
||
|
||
# ------------------------------
|
||
# Test Cases
|
||
# ------------------------------
|
||
|
||
|
||
@pytest.mark.parametrize("language", TEST_LANGUAGES, ids=TEST_LANGUAGES)
|
||
@pytest.mark.parametrize("llm_config", TESTED_LLM_CONFIGS, ids=[c.model for c in TESTED_LLM_CONFIGS])
|
||
def test_run_code(
|
||
client: Letta,
|
||
agent_state: AgentState,
|
||
llm_config: LLMConfig,
|
||
language: str,
|
||
) -> None:
|
||
"""
|
||
Sends a reference Python implementation, asks the model to translate & run it
|
||
in different languages, and verifies the exact partition(100) result.
|
||
"""
|
||
expected = str(reference_partition(100))
|
||
|
||
user_message = MessageCreate(
|
||
role="user",
|
||
content=(
|
||
"Here is a Python reference implementation:\n\n"
|
||
f"{REFERENCE_CODE}\n"
|
||
f"Please translate and execute this code in {language} to compute p(100), "
|
||
"and return **only** the result with no extra formatting."
|
||
),
|
||
otid=USER_MESSAGE_OTID,
|
||
)
|
||
|
||
response = client.agents.messages.create(
|
||
agent_id=agent_state.id,
|
||
messages=[user_message],
|
||
)
|
||
|
||
tool_returns = [m for m in response.messages if isinstance(m, ToolReturnMessage)]
|
||
assert tool_returns, f"No ToolReturnMessage found for language: {language}"
|
||
|
||
returns = [m.tool_return for m in tool_returns]
|
||
assert any(expected in ret for ret in returns), (
|
||
f"For language={language!r}, expected to find '{expected}' in tool_return, " f"but got {returns!r}"
|
||
)
|
||
|
||
|
||
@pytest.mark.parametrize("llm_config", TESTED_LLM_CONFIGS, ids=[c.model for c in TESTED_LLM_CONFIGS])
|
||
def test_web_search(
|
||
client: Letta,
|
||
agent_state: AgentState,
|
||
llm_config: LLMConfig,
|
||
) -> None:
|
||
user_message = MessageCreate(
|
||
role="user",
|
||
content=("Use the web search tool to find the latest news about San Francisco."),
|
||
otid=USER_MESSAGE_OTID,
|
||
)
|
||
|
||
response = client.agents.messages.create(
|
||
agent_id=agent_state.id,
|
||
messages=[user_message],
|
||
)
|
||
|
||
tool_returns = [m for m in response.messages if isinstance(m, ToolReturnMessage)]
|
||
assert tool_returns, "No ToolReturnMessage found"
|
||
|
||
returns = [m.tool_return for m in tool_returns]
|
||
expected = "RESULT 1:"
|
||
assert any(expected in ret for ret in returns), f"Expected to find '{expected}' in tool_return, " f"but got {returns!r}"
|