MemGPT/tests/test_base_functions.py
Sarah Wooders 33cb59c261 bump
2025-05-24 20:44:28 -07:00

221 lines
7.8 KiB
Python

import os
import threading
import pytest
from dotenv import load_dotenv
from letta_client import Letta
import letta.functions.function_sets.base as base_functions
from letta.config import LettaConfig
from letta.schemas.embedding_config import EmbeddingConfig
from letta.schemas.llm_config import LLMConfig
from letta.schemas.message import MessageCreate
from letta.server.server import SyncServer
from tests.test_tool_schema_parsing_files.expected_base_tool_schemas import (
get_finish_rethinking_memory_schema,
get_rethink_user_memory_schema,
get_search_memory_schema,
get_store_memories_schema,
)
from tests.utils import wait_for_server
def _run_server():
"""Starts the Letta server in a background thread."""
load_dotenv()
from letta.server.rest_api.app import start_server
start_server(debug=True)
@pytest.fixture(scope="module")
def server():
"""
Creates a SyncServer instance for testing.
Loads and saves config to ensure proper initialization.
"""
config = LettaConfig.load()
config.save()
server = SyncServer(init_with_default_org_and_user=True)
yield server
@pytest.fixture(scope="session")
def server_url():
"""Ensures a server is running and returns its base URL."""
url = os.getenv("LETTA_SERVER_URL", "http://localhost:8283")
if not os.getenv("LETTA_SERVER_URL"):
thread = threading.Thread(target=_run_server, daemon=True)
thread.start()
wait_for_server(url)
return url
@pytest.fixture(scope="session")
def letta_client(server_url):
"""Creates a REST client for testing."""
client = Letta(base_url=server_url)
client.tools.upsert_base_tools()
return client
@pytest.fixture(scope="function")
def agent_obj(letta_client, server):
"""Create a test agent that we can call functions on"""
send_message_to_agent_and_wait_for_reply_tool_id = letta_client.tools.list(name="send_message_to_agent_and_wait_for_reply")[0].id
agent_state = letta_client.agents.create(
tool_ids=[send_message_to_agent_and_wait_for_reply_tool_id],
include_base_tools=True,
memory_blocks=[
{
"label": "human",
"value": "Name: Matt",
},
{
"label": "persona",
"value": "Friendly agent",
},
],
llm_config=LLMConfig.default_config(model_name="gpt-4o-mini"),
embedding_config=EmbeddingConfig.default_config(provider="openai"),
)
actor = server.user_manager.get_user_or_default()
agent_obj = server.load_agent(agent_id=agent_state.id, actor=actor)
yield agent_obj
def query_in_search_results(search_results, query):
for result in search_results:
if query.lower() in result["content"].lower():
return True
return False
def test_archival(agent_obj):
"""Test archival memory functions comprehensively."""
# Test 1: Basic insertion and retrieval
base_functions.archival_memory_insert(agent_obj, "The cat sleeps on the mat")
base_functions.archival_memory_insert(agent_obj, "The dog plays in the park")
base_functions.archival_memory_insert(agent_obj, "Python is a programming language")
# Test exact text search
results, _ = base_functions.archival_memory_search(agent_obj, "cat")
assert query_in_search_results(results, "cat")
# Test semantic search (should return animal-related content)
results, _ = base_functions.archival_memory_search(agent_obj, "animal pets")
assert query_in_search_results(results, "cat") or query_in_search_results(results, "dog")
# Test unrelated search (should not return animal content)
results, _ = base_functions.archival_memory_search(agent_obj, "programming computers")
assert query_in_search_results(results, "python")
# Test 2: Test pagination
# Insert more items to test pagination
for i in range(10):
base_functions.archival_memory_insert(agent_obj, f"Test passage number {i}")
# Get first page
page0_results, next_page = base_functions.archival_memory_search(agent_obj, "Test passage", page=0)
# Get second page
page1_results, _ = base_functions.archival_memory_search(agent_obj, "Test passage", page=1, start=next_page)
assert page0_results != page1_results
assert query_in_search_results(page0_results, "Test passage")
assert query_in_search_results(page1_results, "Test passage")
# Test 3: Test complex text patterns
base_functions.archival_memory_insert(agent_obj, "Important meeting on 2024-01-15 with John")
base_functions.archival_memory_insert(agent_obj, "Follow-up meeting scheduled for next week")
base_functions.archival_memory_insert(agent_obj, "Project deadline is approaching")
# Search for meeting-related content
results, _ = base_functions.archival_memory_search(agent_obj, "meeting schedule")
assert query_in_search_results(results, "meeting")
assert query_in_search_results(results, "2024-01-15") or query_in_search_results(results, "next week")
# Test 4: Test error handling
# Test invalid page number
try:
base_functions.archival_memory_search(agent_obj, "test", page="invalid")
assert False, "Should have raised ValueError"
except ValueError:
pass
def test_recall(server, agent_obj, default_user):
"""Test that an agent can recall messages using a keyword via conversation search."""
keyword = "banana"
"".join(reversed(keyword))
# Send messages
for msg in ["hello", keyword, "tell me a fun fact"]:
server.send_messages(
actor=default_user,
agent_id=agent_obj.agent_state.id,
input_messages=[MessageCreate(role="user", content=msg)],
)
# Search memory
result = base_functions.conversation_search(agent_obj, "banana")
assert keyword in result
def test_get_rethink_user_memory_parsing(letta_client):
tool = letta_client.tools.list(name="rethink_user_memory")[0]
json_schema = tool.json_schema
# Remove `request_heartbeat` from properties
json_schema["parameters"]["properties"].pop("request_heartbeat", None)
# Remove it from the required list if present
required = json_schema["parameters"].get("required", [])
if "request_heartbeat" in required:
required.remove("request_heartbeat")
assert json_schema == get_rethink_user_memory_schema()
def test_get_finish_rethinking_memory_parsing(letta_client):
tool = letta_client.tools.list(name="finish_rethinking_memory")[0]
json_schema = tool.json_schema
# Remove `request_heartbeat` from properties
json_schema["parameters"]["properties"].pop("request_heartbeat", None)
# Remove it from the required list if present
required = json_schema["parameters"].get("required", [])
if "request_heartbeat" in required:
required.remove("request_heartbeat")
assert json_schema == get_finish_rethinking_memory_schema()
def test_store_memories_parsing(letta_client):
tool = letta_client.tools.list(name="store_memories")[0]
json_schema = tool.json_schema
# Remove `request_heartbeat` from properties
json_schema["parameters"]["properties"].pop("request_heartbeat", None)
# Remove it from the required list if present
required = json_schema["parameters"].get("required", [])
if "request_heartbeat" in required:
required.remove("request_heartbeat")
assert json_schema == get_store_memories_schema()
def test_search_memory_parsing(letta_client):
tool = letta_client.tools.list(name="search_memory")[0]
json_schema = tool.json_schema
# Remove `request_heartbeat` from properties
json_schema["parameters"]["properties"].pop("request_heartbeat", None)
# Remove it from the required list if present
required = json_schema["parameters"].get("required", [])
if "request_heartbeat" in required:
required.remove("request_heartbeat")
assert json_schema == get_search_memory_schema()