MemGPT/letta/services/tool_execution_sandbox.py

459 lines
20 KiB
Python

import ast
import base64
import io
import os
import pickle
import runpy
import subprocess
import sys
import tempfile
import uuid
import venv
from typing import Any, Dict, Optional, TextIO
from letta.log import get_logger
from letta.schemas.agent import AgentState
from letta.schemas.sandbox_config import SandboxConfig, SandboxRunResult, SandboxType
from letta.schemas.tool import Tool
from letta.services.sandbox_config_manager import SandboxConfigManager
from letta.services.tool_manager import ToolManager
from letta.services.user_manager import UserManager
from letta.settings import tool_settings
logger = get_logger(__name__)
class ToolExecutionSandbox:
METADATA_CONFIG_STATE_KEY = "config_state"
REQUIREMENT_TXT_NAME = "requirements.txt"
# For generating long, random marker hashes
NAMESPACE = uuid.NAMESPACE_DNS
LOCAL_SANDBOX_RESULT_START_MARKER = str(uuid.uuid5(NAMESPACE, "local-sandbox-result-start-marker"))
LOCAL_SANDBOX_RESULT_END_MARKER = str(uuid.uuid5(NAMESPACE, "local-sandbox-result-end-marker"))
# This is the variable name in the auto-generated code that contains the function results
# We make this a long random string to avoid collisions with any variables in the user's code
LOCAL_SANDBOX_RESULT_VAR_NAME = "result_ZQqiequkcFwRwwGQMqkt"
def __init__(self, tool_name: str, args: dict, user_id: str, force_recreate=False, tool_object: Optional[Tool] = None):
self.tool_name = tool_name
self.args = args
# Get the user
# This user corresponds to the agent_state's user_id field
# agent_state is the state of the agent that invoked this run
self.user = UserManager().get_user_by_id(user_id=user_id)
# If a tool object is provided, we use it directly, otherwise pull via name
if tool_object is not None:
self.tool = tool_object
else:
# Get the tool via name
# TODO: So in theory, it's possible this retrieves a tool not provisioned to the agent
# TODO: That would probably imply that agent_state is incorrectly configured
self.tool = ToolManager().get_tool_by_name(tool_name=tool_name, actor=self.user)
if not self.tool:
raise ValueError(
f"Agent attempted to invoke tool {self.tool_name} that does not exist for organization {self.user.organization_id}"
)
self.sandbox_config_manager = SandboxConfigManager(tool_settings)
self.force_recreate = force_recreate
def run(self, agent_state: Optional[AgentState] = None) -> Optional[SandboxRunResult]:
"""
Run the tool in a sandbox environment.
Args:
agent_state (Optional[AgentState]): The state of the agent invoking the tool
Returns:
Tuple[Any, Optional[AgentState]]: Tuple containing (tool_result, agent_state)
"""
if tool_settings.e2b_api_key:
logger.debug(f"Using e2b sandbox to execute {self.tool_name}")
result = self.run_e2b_sandbox(agent_state=agent_state)
else:
logger.debug(f"Using local sandbox to execute {self.tool_name}")
result = self.run_local_dir_sandbox(agent_state=agent_state)
# Log out any stdout from the tool run
logger.debug(f"Executed tool '{self.tool_name}', logging stdout from tool run: \n")
for log_line in result.stdout:
logger.debug(f"{log_line}")
logger.debug(f"Ending stdout log from tool run.")
# Return result
return result
# local sandbox specific functions
from contextlib import contextmanager
@contextmanager
def temporary_env_vars(self, env_vars: dict):
original_env = os.environ.copy() # Backup original environment variables
os.environ.update(env_vars) # Update with the new variables
try:
yield
finally:
os.environ.clear()
os.environ.update(original_env) # Restore original environment variables
def run_local_dir_sandbox(self, agent_state: AgentState) -> Optional[SandboxRunResult]:
sbx_config = self.sandbox_config_manager.get_or_create_default_sandbox_config(sandbox_type=SandboxType.LOCAL, actor=self.user)
local_configs = sbx_config.get_local_config()
# Get environment variables for the sandbox
env_vars = self.sandbox_config_manager.get_sandbox_env_vars_as_dict(sandbox_config_id=sbx_config.id, actor=self.user, limit=100)
env = os.environ.copy()
env.update(env_vars)
# Safety checks
if not os.path.isdir(local_configs.sandbox_dir):
raise FileNotFoundError(f"Sandbox directory does not exist: {local_configs.sandbox_dir}")
# Write the code to a temp file in the sandbox_dir
with tempfile.NamedTemporaryFile(mode="w", dir=local_configs.sandbox_dir, suffix=".py", delete=False) as temp_file:
if local_configs.use_venv:
# If using venv, we need to wrap with special string markers to separate out the output and the stdout (since it is all in stdout)
code = self.generate_execution_script(agent_state=agent_state, wrap_print_with_markers=True)
else:
code = self.generate_execution_script(agent_state=agent_state)
temp_file.write(code)
temp_file.flush()
temp_file_path = temp_file.name
# Save the old stdout
old_stdout = sys.stdout
try:
if local_configs.use_venv:
return self.run_local_dir_sandbox_venv(sbx_config, env, temp_file_path)
else:
return self.run_local_dir_sandbox_runpy(sbx_config, env_vars, temp_file_path, old_stdout)
except Exception as e:
logger.error(f"Executing tool {self.tool_name} has an unexpected error: {e}")
logger.error(f"Logging out tool {self.tool_name} auto-generated code for debugging: \n\n{code}")
raise e
finally:
# Clean up the temp file and restore stdout
sys.stdout = old_stdout
os.remove(temp_file_path)
def run_local_dir_sandbox_venv(self, sbx_config: SandboxConfig, env: Dict[str, str], temp_file_path: str) -> SandboxRunResult:
local_configs = sbx_config.get_local_config()
venv_path = os.path.join(local_configs.sandbox_dir, local_configs.venv_name)
# Safety checks for the venv
# Verify that the venv path exists and is a directory
if not os.path.isdir(venv_path):
logger.warning(f"Virtual environment directory does not exist at: {venv_path}, creating one now...")
self.create_venv_for_local_sandbox(sandbox_dir_path=local_configs.sandbox_dir, venv_path=venv_path, env=env)
# Ensure the python interpreter exists in the virtual environment
python_executable = os.path.join(venv_path, "bin", "python3")
if not os.path.isfile(python_executable):
raise FileNotFoundError(f"Python executable not found in virtual environment: {python_executable}")
# Set up env for venv
env["VIRTUAL_ENV"] = venv_path
env["PATH"] = os.path.join(venv_path, "bin") + ":" + env["PATH"]
# Execute the code in a restricted subprocess
try:
result = subprocess.run(
[os.path.join(venv_path, "bin", "python3"), temp_file_path],
env=env,
cwd=local_configs.sandbox_dir, # Restrict execution to sandbox_dir
timeout=60,
capture_output=True,
text=True,
)
if result.stderr:
logger.error(f"Sandbox execution error: {result.stderr}")
raise RuntimeError(f"Sandbox execution error: {result.stderr}")
func_result, stdout = self.parse_out_function_results_markers(result.stdout)
func_return, agent_state = self.parse_best_effort(func_result)
return SandboxRunResult(
func_return=func_return, agent_state=agent_state, stdout=[stdout], sandbox_config_fingerprint=sbx_config.fingerprint()
)
except subprocess.TimeoutExpired:
raise TimeoutError(f"Executing tool {self.tool_name} has timed out.")
except subprocess.CalledProcessError as e:
raise RuntimeError(f"Executing tool {self.tool_name} has process error: {e}")
except Exception as e:
raise RuntimeError(f"Executing tool {self.tool_name} has an unexpected error: {e}")
def run_local_dir_sandbox_runpy(
self, sbx_config: SandboxConfig, env_vars: Dict[str, str], temp_file_path: str, old_stdout: TextIO
) -> SandboxRunResult:
# Redirect stdout to capture script output
captured_stdout = io.StringIO()
sys.stdout = captured_stdout
# Execute the temp file
with self.temporary_env_vars(env_vars):
result = runpy.run_path(temp_file_path, init_globals=env_vars)
# Fetch the result
func_result = result.get(self.LOCAL_SANDBOX_RESULT_VAR_NAME)
func_return, agent_state = self.parse_best_effort(func_result)
# Restore stdout and collect captured output
sys.stdout = old_stdout
stdout_output = captured_stdout.getvalue()
return SandboxRunResult(
func_return=func_return,
agent_state=agent_state,
stdout=[stdout_output],
sandbox_config_fingerprint=sbx_config.fingerprint(),
)
def parse_out_function_results_markers(self, text: str):
marker_len = len(self.LOCAL_SANDBOX_RESULT_START_MARKER)
start_index = text.index(self.LOCAL_SANDBOX_RESULT_START_MARKER) + marker_len
end_index = text.index(self.LOCAL_SANDBOX_RESULT_END_MARKER)
return text[start_index:end_index], text[: start_index - marker_len] + text[end_index + +marker_len :]
def create_venv_for_local_sandbox(self, sandbox_dir_path: str, venv_path: str, env: Dict[str, str]):
# Step 1: Create the virtual environment
venv.create(venv_path, with_pip=True)
pip_path = os.path.join(venv_path, "bin", "pip")
try:
# Step 2: Upgrade pip
logger.info("Upgrading pip in the virtual environment...")
subprocess.run([pip_path, "install", "--upgrade", "pip"], env=env, check=True)
# Step 3: Install packages from requirements.txt if provided
requirements_txt_path = os.path.join(sandbox_dir_path, self.REQUIREMENT_TXT_NAME)
if os.path.isfile(requirements_txt_path):
logger.info(f"Installing packages from requirements file: {requirements_txt_path}")
subprocess.run([pip_path, "install", "-r", requirements_txt_path], env=env, check=True)
logger.info("Successfully installed packages from requirements.txt")
else:
logger.warning("No requirements.txt file provided or the file does not exist. Skipping package installation.")
except subprocess.CalledProcessError as e:
logger.error(f"Error while setting up the virtual environment: {e}")
raise RuntimeError(f"Failed to set up the virtual environment: {e}")
# e2b sandbox specific functions
def run_e2b_sandbox(self, agent_state: AgentState) -> Optional[SandboxRunResult]:
sbx_config = self.sandbox_config_manager.get_or_create_default_sandbox_config(sandbox_type=SandboxType.E2B, actor=self.user)
sbx = self.get_running_e2b_sandbox_with_same_state(sbx_config)
if not sbx or self.force_recreate:
sbx = self.create_e2b_sandbox_with_metadata_hash(sandbox_config=sbx_config)
# Since this sandbox was used, we extend its lifecycle by the timeout
sbx.set_timeout(sbx_config.get_e2b_config().timeout)
# Get environment variables for the sandbox
# TODO: We set limit to 100 here, but maybe we want it uncapped? Realistically this should be fine.
env_vars = self.sandbox_config_manager.get_sandbox_env_vars_as_dict(sandbox_config_id=sbx_config.id, actor=self.user, limit=100)
code = self.generate_execution_script(agent_state=agent_state)
execution = sbx.run_code(code, envs=env_vars)
if execution.error is not None:
logger.error(f"Executing tool {self.tool_name} failed with {execution.error}")
# Raise a concise exception as this gets returned to the LLM
raise self.parse_exception_from_e2b_execution(execution)
elif len(execution.results) == 0:
return None
else:
func_return, agent_state = self.parse_best_effort(execution.results[0].text)
return SandboxRunResult(
func_return=func_return,
agent_state=agent_state,
stdout=execution.logs.stdout + execution.logs.stderr,
sandbox_config_fingerprint=sbx_config.fingerprint(),
)
def parse_exception_from_e2b_execution(self, e2b_execution: "Execution") -> Exception:
builtins_dict = __builtins__ if isinstance(__builtins__, dict) else vars(__builtins__)
# Dynamically fetch the exception class from builtins, defaulting to Exception if not found
exception_class = builtins_dict.get(e2b_execution.error.name, Exception)
return exception_class(e2b_execution.error.value)
def get_running_e2b_sandbox_with_same_state(self, sandbox_config: SandboxConfig) -> Optional["Sandbox"]:
from e2b_code_interpreter import Sandbox
# List running sandboxes and access metadata.
running_sandboxes = self.list_running_e2b_sandboxes()
# Hash the config to check the state
state_hash = sandbox_config.fingerprint()
for sandbox in running_sandboxes:
if self.METADATA_CONFIG_STATE_KEY in sandbox.metadata and sandbox.metadata[self.METADATA_CONFIG_STATE_KEY] == state_hash:
return Sandbox.connect(sandbox.sandbox_id)
return None
def create_e2b_sandbox_with_metadata_hash(self, sandbox_config: SandboxConfig) -> "Sandbox":
from e2b_code_interpreter import Sandbox
state_hash = sandbox_config.fingerprint()
e2b_config = sandbox_config.get_e2b_config()
if e2b_config.template:
sbx = Sandbox(sandbox_config.get_e2b_config().template, metadata={self.METADATA_CONFIG_STATE_KEY: state_hash})
else:
# no template
sbx = Sandbox(metadata={self.METADATA_CONFIG_STATE_KEY: state_hash}, **e2b_config.model_dump(exclude={"pip_requirements"}))
# install pip requirements
if e2b_config.pip_requirements:
for package in e2b_config.pip_requirements:
sbx.commands.run(f"pip install {package}")
return sbx
def list_running_e2b_sandboxes(self):
from e2b_code_interpreter import Sandbox
# List running sandboxes and access metadata.
return Sandbox.list()
# general utility functions
def parse_best_effort(self, text: str) -> Any:
result = pickle.loads(base64.b64decode(text))
agent_state = None
if not result["agent_state"] is None:
agent_state = result["agent_state"]
return result["results"], agent_state
def parse_function_arguments(self, source_code: str, tool_name: str):
"""Get arguments of a function from its source code"""
tree = ast.parse(source_code)
args = []
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef) and node.name == tool_name:
for arg in node.args.args:
args.append(arg.arg)
return args
def generate_execution_script(self, agent_state: AgentState, wrap_print_with_markers: bool = False) -> str:
"""
Generate code to run inside of execution sandbox.
Passes into a serialized agent state into the code, to be accessed by the tool.
Args:
agent_state (AgentState): The agent state
wrap_print_with_markers (bool): If true, we wrap the final statement with a `print` and wrap with special markers
Returns:
code (str): The generated code strong
"""
# dump JSON representation of agent state to re-load
code = "from typing import *\n"
code += "import pickle\n"
code += "import sys\n"
code += "import base64\n"
# Load the agent state data into the program
if agent_state:
code += "import letta\n"
code += "from letta import * \n"
import pickle
agent_state_pickle = pickle.dumps(agent_state)
code += f"agent_state = pickle.loads({agent_state_pickle})\n"
else:
# agent state is None
code += "agent_state = None\n"
for param in self.args:
code += self.initialize_param(param, self.args[param])
if "agent_state" in self.parse_function_arguments(self.tool.source_code, self.tool.name):
inject_agent_state = True
else:
inject_agent_state = False
code += "\n" + self.tool.source_code + "\n"
# TODO: handle wrapped print
code += (
self.LOCAL_SANDBOX_RESULT_VAR_NAME
+ ' = {"results": '
+ self.invoke_function_call(inject_agent_state=inject_agent_state)
+ ', "agent_state": agent_state}\n'
)
code += (
f"{self.LOCAL_SANDBOX_RESULT_VAR_NAME} = base64.b64encode(pickle.dumps({self.LOCAL_SANDBOX_RESULT_VAR_NAME})).decode('utf-8')\n"
)
if wrap_print_with_markers:
code += f"sys.stdout.write('{self.LOCAL_SANDBOX_RESULT_START_MARKER}')\n"
code += f"sys.stdout.write(str({self.LOCAL_SANDBOX_RESULT_VAR_NAME}))\n"
code += f"sys.stdout.write('{self.LOCAL_SANDBOX_RESULT_END_MARKER}')\n"
else:
code += f"{self.LOCAL_SANDBOX_RESULT_VAR_NAME}\n"
return code
def _convert_param_to_value(self, param_type: str, raw_value: str) -> str:
if param_type == "string":
value = "pickle.loads(" + str(pickle.dumps(raw_value)) + ")"
elif param_type == "integer" or param_type == "boolean" or param_type == "number":
value = raw_value
elif param_type == "array":
value = raw_value
elif param_type == "object":
value = raw_value
else:
raise TypeError(f"Unsupported type: {param_type}, raw_value={raw_value}")
return str(value)
def initialize_param(self, name: str, raw_value: str) -> str:
params = self.tool.json_schema["parameters"]["properties"]
spec = params.get(name)
if spec is None:
# ignore extra params (like 'self') for now
return ""
param_type = spec.get("type")
if param_type is None and spec.get("parameters"):
param_type = spec["parameters"].get("type")
value = self._convert_param_to_value(param_type, raw_value)
return name + " = " + value + "\n"
def invoke_function_call(self, inject_agent_state: bool) -> str:
"""
Generate the code string to call the function.
Args:
inject_agent_state (bool): Whether to inject the agent's state as an input into the tool
Returns:
str: Generated code string for calling the tool
"""
kwargs = []
for name in self.args:
if name in self.tool.json_schema["parameters"]["properties"]:
kwargs.append(name)
param_list = [f"{arg}={arg}" for arg in kwargs]
if inject_agent_state:
param_list.append("agent_state=agent_state")
params = ", ".join(param_list)
# if "agent_state" in kwargs:
# params += ", agent_state=agent_state"
# TODO: fix to figure out when to insert agent state or not
# params += "agent_state=agent_state"
func_call_str = self.tool.name + "(" + params + ")"
return func_call_str
#