MemGPT/letta/cli/cli.py
Matthew Zhou 01fdf8684c
feat: Add put_inner_thoughts_in_kwargs as a config setting for the LLM (#1902)
Co-authored-by: Matt Zhou <mattzhou@Matts-MacBook-Pro.local>
2024-10-17 15:54:03 -07:00

361 lines
16 KiB
Python

import logging
import sys
from enum import Enum
from typing import Annotated, Optional
import questionary
import typer
import letta.utils as utils
from letta import create_client
from letta.agent import Agent, save_agent
from letta.config import LettaConfig
from letta.constants import CLI_WARNING_PREFIX, LETTA_DIR
from letta.local_llm.constants import ASSISTANT_MESSAGE_CLI_SYMBOL
from letta.log import get_logger
from letta.metadata import MetadataStore
from letta.schemas.enums import OptionState
from letta.schemas.memory import ChatMemory, Memory
from letta.server.server import logger as server_logger
# from letta.interface import CLIInterface as interface # for printing to terminal
from letta.streaming_interface import (
StreamingRefreshCLIInterface as interface, # for printing to terminal
)
from letta.utils import open_folder_in_explorer, printd
logger = get_logger(__name__)
def open_folder():
"""Open a folder viewer of the Letta home directory"""
try:
print(f"Opening home folder: {LETTA_DIR}")
open_folder_in_explorer(LETTA_DIR)
except Exception as e:
print(f"Failed to open folder with system viewer, error:\n{e}")
class ServerChoice(Enum):
rest_api = "rest"
ws_api = "websocket"
def server(
type: Annotated[ServerChoice, typer.Option(help="Server to run")] = "rest",
port: Annotated[Optional[int], typer.Option(help="Port to run the server on")] = None,
host: Annotated[Optional[str], typer.Option(help="Host to run the server on (default to localhost)")] = None,
debug: Annotated[bool, typer.Option(help="Turn debugging output on")] = False,
ade: Annotated[bool, typer.Option(help="Allows remote access")] = False,
):
"""Launch a Letta server process"""
if type == ServerChoice.rest_api:
pass
# if LettaConfig.exists():
# config = LettaConfig.load()
# MetadataStore(config)
# _ = create_client() # triggers user creation
# else:
# typer.secho(f"No configuration exists. Run letta configure before starting the server.", fg=typer.colors.RED)
# sys.exit(1)
try:
from letta.server.rest_api.app import start_server
start_server(port=port, host=host, debug=debug)
except KeyboardInterrupt:
# Handle CTRL-C
typer.secho("Terminating the server...")
sys.exit(0)
elif type == ServerChoice.ws_api:
raise NotImplementedError("WS suppport deprecated")
def run(
persona: Annotated[Optional[str], typer.Option(help="Specify persona")] = None,
agent: Annotated[Optional[str], typer.Option(help="Specify agent name")] = None,
human: Annotated[Optional[str], typer.Option(help="Specify human")] = None,
system: Annotated[Optional[str], typer.Option(help="Specify system prompt (raw text)")] = None,
system_file: Annotated[Optional[str], typer.Option(help="Specify raw text file containing system prompt")] = None,
# model flags
model: Annotated[Optional[str], typer.Option(help="Specify the LLM model")] = None,
model_wrapper: Annotated[Optional[str], typer.Option(help="Specify the LLM model wrapper")] = None,
model_endpoint: Annotated[Optional[str], typer.Option(help="Specify the LLM model endpoint")] = None,
model_endpoint_type: Annotated[Optional[str], typer.Option(help="Specify the LLM model endpoint type")] = None,
context_window: Annotated[
Optional[int], typer.Option(help="The context window of the LLM you are using (e.g. 8k for most Mistral 7B variants)")
] = None,
core_memory_limit: Annotated[
Optional[int], typer.Option(help="The character limit to each core-memory section (human/persona).")
] = 2000,
# other
first: Annotated[bool, typer.Option(help="Use --first to send the first message in the sequence")] = False,
strip_ui: Annotated[bool, typer.Option(help="Remove all the bells and whistles in CLI output (helpful for testing)")] = False,
debug: Annotated[bool, typer.Option(help="Use --debug to enable debugging output")] = False,
no_verify: Annotated[bool, typer.Option(help="Bypass message verification")] = False,
yes: Annotated[bool, typer.Option("-y", help="Skip confirmation prompt and use defaults")] = False,
# streaming
stream: Annotated[bool, typer.Option(help="Enables message streaming in the CLI (if the backend supports it)")] = False,
# whether or not to put the inner thoughts inside the function args
no_content: Annotated[
OptionState, typer.Option(help="Set to 'yes' for LLM APIs that omit the `content` field during tool calling")
] = OptionState.DEFAULT,
):
"""Start chatting with an Letta agent
Example usage: `letta run --agent myagent --data-source mydata --persona mypersona --human myhuman --model gpt-3.5-turbo`
:param persona: Specify persona
:param agent: Specify agent name (will load existing state if the agent exists, or create a new one with that name)
:param human: Specify human
:param model: Specify the LLM model
"""
# setup logger
# TODO: remove Utils Debug after global logging is complete.
utils.DEBUG = debug
# TODO: add logging command line options for runtime log level
if debug:
logger.setLevel(logging.DEBUG)
server_logger.setLevel(logging.DEBUG)
else:
logger.setLevel(logging.CRITICAL)
server_logger.setLevel(logging.CRITICAL)
# load config file
config = LettaConfig.load()
# read user id from config
ms = MetadataStore(config)
client = create_client()
# determine agent to use, if not provided
if not yes and not agent:
agents = client.list_agents()
agents = [a.name for a in agents]
if len(agents) > 0:
print()
select_agent = questionary.confirm("Would you like to select an existing agent?").ask()
if select_agent is None:
raise KeyboardInterrupt
if select_agent:
agent = questionary.select("Select agent:", choices=agents).ask()
# create agent config
if agent:
agent_id = client.get_agent_id(agent)
agent_state = client.get_agent(agent_id)
else:
agent_state = None
human = human if human else config.human
persona = persona if persona else config.persona
if agent and agent_state: # use existing agent
typer.secho(f"\n🔁 Using existing agent {agent}", fg=typer.colors.GREEN)
# agent_config = AgentConfig.load(agent)
# agent_state = ms.get_agent(agent_name=agent, user_id=user_id)
printd("Loading agent state:", agent_state.id)
printd("Agent state:", agent_state.name)
# printd("State path:", agent_config.save_state_dir())
# printd("Persistent manager path:", agent_config.save_persistence_manager_dir())
# printd("Index path:", agent_config.save_agent_index_dir())
# persistence_manager = LocalStateManager(agent_config).load() # TODO: implement load
# TODO: load prior agent state
# Allow overriding model specifics (model, model wrapper, model endpoint IP + type, context_window)
if model and model != agent_state.llm_config.model:
typer.secho(
f"{CLI_WARNING_PREFIX}Overriding existing model {agent_state.llm_config.model} with {model}", fg=typer.colors.YELLOW
)
agent_state.llm_config.model = model
if context_window is not None and int(context_window) != agent_state.llm_config.context_window:
typer.secho(
f"{CLI_WARNING_PREFIX}Overriding existing context window {agent_state.llm_config.context_window} with {context_window}",
fg=typer.colors.YELLOW,
)
agent_state.llm_config.context_window = context_window
if model_wrapper and model_wrapper != agent_state.llm_config.model_wrapper:
typer.secho(
f"{CLI_WARNING_PREFIX}Overriding existing model wrapper {agent_state.llm_config.model_wrapper} with {model_wrapper}",
fg=typer.colors.YELLOW,
)
agent_state.llm_config.model_wrapper = model_wrapper
if model_endpoint and model_endpoint != agent_state.llm_config.model_endpoint:
typer.secho(
f"{CLI_WARNING_PREFIX}Overriding existing model endpoint {agent_state.llm_config.model_endpoint} with {model_endpoint}",
fg=typer.colors.YELLOW,
)
agent_state.llm_config.model_endpoint = model_endpoint
if model_endpoint_type and model_endpoint_type != agent_state.llm_config.model_endpoint_type:
typer.secho(
f"{CLI_WARNING_PREFIX}Overriding existing model endpoint type {agent_state.llm_config.model_endpoint_type} with {model_endpoint_type}",
fg=typer.colors.YELLOW,
)
agent_state.llm_config.model_endpoint_type = model_endpoint_type
# NOTE: commented out because this seems dangerous - instead users should use /systemswap when in the CLI
# # user specified a new system prompt
# if system:
# # NOTE: agent_state.system is the ORIGINAL system prompt,
# # whereas agent_state.state["system"] is the LATEST system prompt
# existing_system_prompt = agent_state.state["system"] if "system" in agent_state.state else None
# if existing_system_prompt != system:
# # override
# agent_state.state["system"] = system
# Update the agent with any overrides
agent_state = client.update_agent(
agent_id=agent_state.id,
name=agent_state.name,
llm_config=agent_state.llm_config,
embedding_config=agent_state.embedding_config,
)
# create agent
tools = [ms.get_tool(tool_name, user_id=client.user_id) for tool_name in agent_state.tools]
letta_agent = Agent(agent_state=agent_state, interface=interface(), tools=tools)
else: # create new agent
# create new agent config: override defaults with args if provided
typer.secho("\n🧬 Creating new agent...", fg=typer.colors.WHITE)
agent_name = agent if agent else utils.create_random_username()
# create agent
client = create_client()
# choose from list of llm_configs
llm_configs = client.list_llm_configs()
llm_options = [llm_config.model for llm_config in llm_configs]
llm_choices = [questionary.Choice(title=llm_config.pretty_print(), value=llm_config) for llm_config in llm_configs]
# select model
if len(llm_options) == 0:
raise ValueError("No LLM models found. Please enable a provider.")
elif len(llm_options) == 1:
llm_model_name = llm_options[0]
else:
llm_model_name = questionary.select("Select LLM model:", choices=llm_choices).ask().model
llm_config = [llm_config for llm_config in llm_configs if llm_config.model == llm_model_name][0]
# choose form list of embedding configs
embedding_configs = client.list_embedding_configs()
embedding_options = [embedding_config.embedding_model for embedding_config in embedding_configs]
embedding_choices = [
questionary.Choice(title=embedding_config.pretty_print(), value=embedding_config) for embedding_config in embedding_configs
]
# select model
if len(embedding_options) == 0:
raise ValueError("No embedding models found. Please enable a provider.")
elif len(embedding_options) == 1:
embedding_model_name = embedding_options[0]
else:
embedding_model_name = questionary.select("Select embedding model:", choices=embedding_choices).ask().embedding_model
embedding_config = [
embedding_config for embedding_config in embedding_configs if embedding_config.embedding_model == embedding_model_name
][0]
human_obj = client.get_human(client.get_human_id(name=human))
persona_obj = client.get_persona(client.get_persona_id(name=persona))
if human_obj is None:
typer.secho(f"Couldn't find human {human} in database, please run `letta add human`", fg=typer.colors.RED)
sys.exit(1)
if persona_obj is None:
typer.secho(f"Couldn't find persona {persona} in database, please run `letta add persona`", fg=typer.colors.RED)
sys.exit(1)
if system_file:
try:
with open(system_file, "r", encoding="utf-8") as file:
system = file.read().strip()
printd("Loaded system file successfully.")
except FileNotFoundError:
typer.secho(f"System file not found at {system_file}", fg=typer.colors.RED)
system_prompt = system if system else None
memory = ChatMemory(human=human_obj.value, persona=persona_obj.value, limit=core_memory_limit)
metadata = {"human": human_obj.name, "persona": persona_obj.name}
typer.secho(f"-> {ASSISTANT_MESSAGE_CLI_SYMBOL} Using persona profile: '{persona_obj.name}'", fg=typer.colors.WHITE)
typer.secho(f"-> 🧑 Using human profile: '{human_obj.name}'", fg=typer.colors.WHITE)
# add tools
agent_state = client.create_agent(
name=agent_name,
system=system_prompt,
embedding_config=embedding_config,
llm_config=llm_config,
memory=memory,
metadata=metadata,
)
assert isinstance(agent_state.memory, Memory), f"Expected Memory, got {type(agent_state.memory)}"
typer.secho(f"-> 🛠️ {len(agent_state.tools)} tools: {', '.join([t for t in agent_state.tools])}", fg=typer.colors.WHITE)
tools = [ms.get_tool(tool_name, user_id=client.user_id) for tool_name in agent_state.tools]
letta_agent = Agent(
interface=interface(),
agent_state=agent_state,
tools=tools,
# gpt-3.5-turbo tends to omit inner monologue, relax this requirement for now
first_message_verify_mono=True if (model is not None and "gpt-4" in model) else False,
)
save_agent(agent=letta_agent, ms=ms)
typer.secho(f"🎉 Created new agent '{letta_agent.agent_state.name}' (id={letta_agent.agent_state.id})", fg=typer.colors.GREEN)
# start event loop
from letta.main import run_agent_loop
print() # extra space
run_agent_loop(
letta_agent=letta_agent,
config=config,
first=first,
ms=ms,
no_verify=no_verify,
stream=stream,
) # TODO: add back no_verify
def delete_agent(
agent_name: Annotated[str, typer.Option(help="Specify agent to delete")],
user_id: Annotated[Optional[str], typer.Option(help="User ID to associate with the agent.")] = None,
):
"""Delete an agent from the database"""
# use client ID is no user_id provided
config = LettaConfig.load()
MetadataStore(config)
client = create_client(user_id=user_id)
agent = client.get_agent_by_name(agent_name)
if not agent:
typer.secho(f"Couldn't find agent named '{agent_name}' to delete", fg=typer.colors.RED)
sys.exit(1)
confirm = questionary.confirm(f"Are you sure you want to delete agent '{agent_name}' (id={agent.id})?", default=False).ask()
if confirm is None:
raise KeyboardInterrupt
if not confirm:
typer.secho(f"Cancelled agent deletion '{agent_name}' (id={agent.id})", fg=typer.colors.GREEN)
return
try:
# delete the agent
client.delete_agent(agent.id)
typer.secho(f"🕊️ Successfully deleted agent '{agent_name}' (id={agent.id})", fg=typer.colors.GREEN)
except Exception:
typer.secho(f"Failed to delete agent '{agent_name}' (id={agent.id})", fg=typer.colors.RED)
sys.exit(1)
def version():
import letta
print(letta.__version__)
return letta.__version__