mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00

Co-authored-by: Charles Packer <packercharles@gmail.com> Co-authored-by: cthomas <caren@letta.com> Co-authored-by: Shubham Naik <shubham.naik10@gmail.com> Co-authored-by: Shubham Naik <shub@memgpt.ai> Co-authored-by: mlong93 <35275280+mlong93@users.noreply.github.com> Co-authored-by: Mindy Long <mindy@letta.com> Co-authored-by: Kevin Lin <klin5061@gmail.com> Co-authored-by: Stephan Fitzpatrick <stephan@knowsuchagency.com> Co-authored-by: dboyliao <qmalliao@gmail.com> Co-authored-by: Sarah Wooders <sarahwooders@gmail.com> Co-authored-by: Jyotirmaya Mahanta <jyotirmaya.mahanta@gmail.com> Co-authored-by: Nicholas <102550462+ndisalvio3@users.noreply.github.com> Co-authored-by: tarunkumark <tkksctwo@gmail.com> Co-authored-by: Miao <one.lemorage@gmail.com> Co-authored-by: Krishnakumar R (KK) <65895020+kk-src@users.noreply.github.com> Co-authored-by: Shubham Naik <shub@letta.com> Co-authored-by: Will Sargent <will.sargent@gmail.com>
314 lines
14 KiB
Python
314 lines
14 KiB
Python
import pytest
|
|
|
|
import letta.functions.function_sets.base as base_functions
|
|
from letta import LocalClient, create_client
|
|
from letta.schemas.embedding_config import EmbeddingConfig
|
|
from letta.schemas.llm_config import LLMConfig
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def client():
|
|
client = create_client()
|
|
client.set_default_llm_config(LLMConfig.default_config("gpt-4o"))
|
|
client.set_default_embedding_config(EmbeddingConfig.default_config(provider="openai"))
|
|
|
|
yield client
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def agent_obj(client: LocalClient):
|
|
"""Create a test agent that we can call functions on"""
|
|
send_message_to_agent_and_wait_for_reply_tool_id = client.get_tool_id(name="send_message_to_agent_and_wait_for_reply")
|
|
agent_state = client.create_agent(tool_ids=[send_message_to_agent_and_wait_for_reply_tool_id])
|
|
|
|
agent_obj = client.server.load_agent(agent_id=agent_state.id, actor=client.user)
|
|
yield agent_obj
|
|
|
|
# client.delete_agent(agent_obj.agent_state.id)
|
|
|
|
|
|
def query_in_search_results(search_results, query):
|
|
for result in search_results:
|
|
if query.lower() in result["content"].lower():
|
|
return True
|
|
return False
|
|
|
|
|
|
def test_archival(agent_obj):
|
|
"""Test archival memory functions comprehensively."""
|
|
# Test 1: Basic insertion and retrieval
|
|
base_functions.archival_memory_insert(agent_obj, "The cat sleeps on the mat")
|
|
base_functions.archival_memory_insert(agent_obj, "The dog plays in the park")
|
|
base_functions.archival_memory_insert(agent_obj, "Python is a programming language")
|
|
|
|
# Test exact text search
|
|
results, _ = base_functions.archival_memory_search(agent_obj, "cat")
|
|
assert query_in_search_results(results, "cat")
|
|
|
|
# Test semantic search (should return animal-related content)
|
|
results, _ = base_functions.archival_memory_search(agent_obj, "animal pets")
|
|
assert query_in_search_results(results, "cat") or query_in_search_results(results, "dog")
|
|
|
|
# Test unrelated search (should not return animal content)
|
|
results, _ = base_functions.archival_memory_search(agent_obj, "programming computers")
|
|
assert query_in_search_results(results, "python")
|
|
|
|
# Test 2: Test pagination
|
|
# Insert more items to test pagination
|
|
for i in range(10):
|
|
base_functions.archival_memory_insert(agent_obj, f"Test passage number {i}")
|
|
|
|
# Get first page
|
|
page0_results, next_page = base_functions.archival_memory_search(agent_obj, "Test passage", page=0)
|
|
# Get second page
|
|
page1_results, _ = base_functions.archival_memory_search(agent_obj, "Test passage", page=1, start=next_page)
|
|
|
|
assert page0_results != page1_results
|
|
assert query_in_search_results(page0_results, "Test passage")
|
|
assert query_in_search_results(page1_results, "Test passage")
|
|
|
|
# Test 3: Test complex text patterns
|
|
base_functions.archival_memory_insert(agent_obj, "Important meeting on 2024-01-15 with John")
|
|
base_functions.archival_memory_insert(agent_obj, "Follow-up meeting scheduled for next week")
|
|
base_functions.archival_memory_insert(agent_obj, "Project deadline is approaching")
|
|
|
|
# Search for meeting-related content
|
|
results, _ = base_functions.archival_memory_search(agent_obj, "meeting schedule")
|
|
assert query_in_search_results(results, "meeting")
|
|
assert query_in_search_results(results, "2024-01-15") or query_in_search_results(results, "next week")
|
|
|
|
# Test 4: Test error handling
|
|
# Test invalid page number
|
|
try:
|
|
base_functions.archival_memory_search(agent_obj, "test", page="invalid")
|
|
assert False, "Should have raised ValueError"
|
|
except ValueError:
|
|
pass
|
|
|
|
|
|
def test_recall(client, agent_obj):
|
|
# keyword
|
|
keyword = "banana"
|
|
|
|
# Send messages to agent
|
|
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message="hello")
|
|
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message=keyword)
|
|
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message="tell me a fun fact")
|
|
|
|
# Conversation search
|
|
result = base_functions.conversation_search(agent_obj, "banana")
|
|
assert keyword in result
|
|
|
|
|
|
# This test is nondeterministic, so we retry until we get the perfect behavior from the LLM
|
|
@retry_until_success(max_attempts=2, sleep_time_seconds=2)
|
|
def test_send_message_to_agent(client, agent_obj, other_agent_obj):
|
|
secret_word = "banana"
|
|
|
|
# Encourage the agent to send a message to the other agent_obj with the secret string
|
|
client.send_message(
|
|
agent_id=agent_obj.agent_state.id,
|
|
role="user",
|
|
message=f"Use your tool to send a message to another agent with id {other_agent_obj.agent_state.id} to share the secret word: {secret_word}!",
|
|
)
|
|
|
|
# Conversation search the other agent
|
|
messages = client.get_messages(other_agent_obj.agent_state.id)
|
|
# Check for the presence of system message
|
|
for m in reversed(messages):
|
|
print(f"\n\n {other_agent_obj.agent_state.id} -> {m.model_dump_json(indent=4)}")
|
|
if isinstance(m, SystemMessage):
|
|
assert secret_word in m.content
|
|
break
|
|
|
|
# Search the sender agent for the response from another agent
|
|
in_context_messages = agent_obj.agent_manager.get_in_context_messages(agent_id=agent_obj.agent_state.id, actor=agent_obj.user)
|
|
found = False
|
|
target_snippet = f"{other_agent_obj.agent_state.id} said:"
|
|
|
|
for m in in_context_messages:
|
|
if target_snippet in m.text:
|
|
found = True
|
|
break
|
|
|
|
# Compute the joined string first
|
|
joined_messages = "\n".join([m.text for m in in_context_messages[1:]])
|
|
print(f"In context messages of the sender agent (without system):\n\n{joined_messages}")
|
|
if not found:
|
|
raise Exception(f"Was not able to find an instance of the target snippet: {target_snippet}")
|
|
|
|
# Test that the agent can still receive messages fine
|
|
response = client.send_message(agent_id=agent_obj.agent_state.id, role="user", message="So what did the other agent say?")
|
|
print(response.messages)
|
|
|
|
|
|
@retry_until_success(max_attempts=2, sleep_time_seconds=2)
|
|
def test_send_message_to_agents_with_tags_simple(client):
|
|
worker_tags = ["worker", "user-456"]
|
|
|
|
# Clean up first from possibly failed tests
|
|
prev_worker_agents = client.server.agent_manager.list_agents(client.user, tags=worker_tags, match_all_tags=True)
|
|
for agent in prev_worker_agents:
|
|
client.delete_agent(agent.id)
|
|
|
|
secret_word = "banana"
|
|
|
|
# Create "manager" agent
|
|
send_message_to_agents_matching_all_tags_tool_id = client.get_tool_id(name="send_message_to_agents_matching_all_tags")
|
|
manager_agent_state = client.create_agent(tool_ids=[send_message_to_agents_matching_all_tags_tool_id])
|
|
manager_agent = client.server.load_agent(agent_id=manager_agent_state.id, actor=client.user)
|
|
|
|
# Create 3 non-matching worker agents (These should NOT get the message)
|
|
worker_agents = []
|
|
worker_tags = ["worker", "user-123"]
|
|
for _ in range(3):
|
|
worker_agent_state = client.create_agent(include_multi_agent_tools=False, tags=worker_tags)
|
|
worker_agent = client.server.load_agent(agent_id=worker_agent_state.id, actor=client.user)
|
|
worker_agents.append(worker_agent)
|
|
|
|
# Create 3 worker agents that should get the message
|
|
worker_agents = []
|
|
worker_tags = ["worker", "user-456"]
|
|
for _ in range(3):
|
|
worker_agent_state = client.create_agent(include_multi_agent_tools=False, tags=worker_tags)
|
|
worker_agent = client.server.load_agent(agent_id=worker_agent_state.id, actor=client.user)
|
|
worker_agents.append(worker_agent)
|
|
|
|
# Encourage the manager to send a message to the other agent_obj with the secret string
|
|
response = client.send_message(
|
|
agent_id=manager_agent.agent_state.id,
|
|
role="user",
|
|
message=f"Send a message to all agents with tags {worker_tags} informing them of the secret word: {secret_word}!",
|
|
)
|
|
|
|
for m in response.messages:
|
|
if isinstance(m, ToolReturnMessage):
|
|
tool_response = eval(json.loads(m.tool_return)["message"])
|
|
print(f"\n\nManager agent tool response: \n{tool_response}\n\n")
|
|
assert len(tool_response) == len(worker_agents)
|
|
|
|
# We can break after this, the ToolReturnMessage after is not related
|
|
break
|
|
|
|
# Conversation search the worker agents
|
|
for agent in worker_agents:
|
|
messages = client.get_messages(agent.agent_state.id)
|
|
# Check for the presence of system message
|
|
for m in reversed(messages):
|
|
print(f"\n\n {agent.agent_state.id} -> {m.model_dump_json(indent=4)}")
|
|
if isinstance(m, SystemMessage):
|
|
assert secret_word in m.content
|
|
break
|
|
|
|
# Test that the agent can still receive messages fine
|
|
response = client.send_message(agent_id=manager_agent.agent_state.id, role="user", message="So what did the other agents say?")
|
|
print("Manager agent followup message: \n\n" + "\n".join([str(m) for m in response.messages]))
|
|
|
|
# Clean up agents
|
|
client.delete_agent(manager_agent_state.id)
|
|
for agent in worker_agents:
|
|
client.delete_agent(agent.agent_state.id)
|
|
|
|
|
|
# This test is nondeterministic, so we retry until we get the perfect behavior from the LLM
|
|
@retry_until_success(max_attempts=2, sleep_time_seconds=2)
|
|
def test_send_message_to_agents_with_tags_complex_tool_use(client, roll_dice_tool):
|
|
worker_tags = ["dice-rollers"]
|
|
|
|
# Clean up first from possibly failed tests
|
|
prev_worker_agents = client.server.agent_manager.list_agents(client.user, tags=worker_tags, match_all_tags=True)
|
|
for agent in prev_worker_agents:
|
|
client.delete_agent(agent.id)
|
|
|
|
# Create "manager" agent
|
|
send_message_to_agents_matching_all_tags_tool_id = client.get_tool_id(name="send_message_to_agents_matching_all_tags")
|
|
manager_agent_state = client.create_agent(tool_ids=[send_message_to_agents_matching_all_tags_tool_id])
|
|
manager_agent = client.server.load_agent(agent_id=manager_agent_state.id, actor=client.user)
|
|
|
|
# Create 3 worker agents
|
|
worker_agents = []
|
|
worker_tags = ["dice-rollers"]
|
|
for _ in range(2):
|
|
worker_agent_state = client.create_agent(include_multi_agent_tools=False, tags=worker_tags, tool_ids=[roll_dice_tool.id])
|
|
worker_agent = client.server.load_agent(agent_id=worker_agent_state.id, actor=client.user)
|
|
worker_agents.append(worker_agent)
|
|
|
|
# Encourage the manager to send a message to the other agent_obj with the secret string
|
|
broadcast_message = f"Send a message to all agents with tags {worker_tags} asking them to roll a dice for you!"
|
|
response = client.send_message(
|
|
agent_id=manager_agent.agent_state.id,
|
|
role="user",
|
|
message=broadcast_message,
|
|
)
|
|
|
|
for m in response.messages:
|
|
if isinstance(m, ToolReturnMessage):
|
|
tool_response = eval(json.loads(m.tool_return)["message"])
|
|
print(f"\n\nManager agent tool response: \n{tool_response}\n\n")
|
|
assert len(tool_response) == len(worker_agents)
|
|
|
|
# We can break after this, the ToolReturnMessage after is not related
|
|
break
|
|
|
|
# Test that the agent can still receive messages fine
|
|
response = client.send_message(agent_id=manager_agent.agent_state.id, role="user", message="So what did the other agents say?")
|
|
print("Manager agent followup message: \n\n" + "\n".join([str(m) for m in response.messages]))
|
|
|
|
# Clean up agents
|
|
client.delete_agent(manager_agent_state.id)
|
|
for agent in worker_agents:
|
|
client.delete_agent(agent.agent_state.id)
|
|
|
|
|
|
@retry_until_success(max_attempts=5, sleep_time_seconds=2)
|
|
def test_agents_async_simple(client):
|
|
"""
|
|
Test two agents with multi-agent tools sending messages back and forth to count to 5.
|
|
The chain is started by prompting one of the agents.
|
|
"""
|
|
# Cleanup from potentially failed previous runs
|
|
existing_agents = client.server.agent_manager.list_agents(client.user)
|
|
for agent in existing_agents:
|
|
client.delete_agent(agent.id)
|
|
|
|
# Create two agents with multi-agent tools
|
|
send_message_to_agent_async_tool_id = client.get_tool_id(name="send_message_to_agent_async")
|
|
memory_a = ChatMemory(
|
|
human="Chad - I'm interested in hearing poem.",
|
|
persona="You are an AI agent that can communicate with your agent buddy using `send_message_to_agent_async`, who has some great poem ideas (so I've heard).",
|
|
)
|
|
charles_state = client.create_agent(name="charles", memory=memory_a, tool_ids=[send_message_to_agent_async_tool_id])
|
|
charles = client.server.load_agent(agent_id=charles_state.id, actor=client.user)
|
|
|
|
memory_b = ChatMemory(
|
|
human="No human - you are to only communicate with the other AI agent.",
|
|
persona="You are an AI agent that can communicate with your agent buddy using `send_message_to_agent_async`, who is interested in great poem ideas.",
|
|
)
|
|
sarah_state = client.create_agent(name="sarah", memory=memory_b, tool_ids=[send_message_to_agent_async_tool_id])
|
|
|
|
# Start the count chain with Agent1
|
|
initial_prompt = f"I want you to talk to the other agent with ID {sarah_state.id} using `send_message_to_agent_async`. Specifically, I want you to ask him for a poem idea, and then craft a poem for me."
|
|
client.send_message(
|
|
agent_id=charles.agent_state.id,
|
|
role="user",
|
|
message=initial_prompt,
|
|
)
|
|
|
|
found_in_charles = wait_for_incoming_message(
|
|
client=client,
|
|
agent_id=charles_state.id,
|
|
substring="[Incoming message from agent with ID",
|
|
max_wait_seconds=10,
|
|
sleep_interval=0.5,
|
|
)
|
|
assert found_in_charles, "Charles never received the system message from Sarah (timed out)."
|
|
|
|
found_in_sarah = wait_for_incoming_message(
|
|
client=client,
|
|
agent_id=sarah_state.id,
|
|
substring="[Incoming message from agent with ID",
|
|
max_wait_seconds=10,
|
|
sleep_interval=0.5,
|
|
)
|
|
assert found_in_sarah, "Sarah never received the system message from Charles (timed out)."
|