MemGPT/letta/server/server.py
2024-09-25 15:18:46 -07:00

2007 lines
82 KiB
Python

# inspecting tools
import importlib
import inspect
import os
import traceback
import warnings
from abc import abstractmethod
from datetime import datetime
from typing import Callable, Dict, List, Optional, Tuple, Union
from fastapi import HTTPException
import letta.constants as constants
import letta.server.utils as server_utils
import letta.system as system
from letta.agent import Agent, save_agent
from letta.agent_store.storage import StorageConnector, TableType
from letta.cli.cli_config import get_model_options
from letta.config import LettaConfig
from letta.credentials import LettaCredentials
from letta.data_sources.connectors import DataConnector, load_data
# from letta.data_types import (
# AgentState,
# EmbeddingConfig,
# LLMConfig,
# Message,
# Preset,
# Source,
# Token,
# User,
# )
from letta.functions.functions import (
generate_schema,
load_function_set,
parse_source_code,
)
from letta.functions.schema_generator import generate_schema
# TODO use custom interface
from letta.interface import AgentInterface # abstract
from letta.interface import CLIInterface # for printing to terminal
from letta.log import get_logger
from letta.memory import get_memory_functions
from letta.metadata import MetadataStore
from letta.prompts import gpt_system
from letta.schemas.agent import AgentState, CreateAgent, UpdateAgentState
from letta.schemas.api_key import APIKey, APIKeyCreate
from letta.schemas.block import (
Block,
CreateBlock,
CreateHuman,
CreatePersona,
UpdateBlock,
)
from letta.schemas.document import Document
from letta.schemas.embedding_config import EmbeddingConfig
# openai schemas
from letta.schemas.enums import JobStatus
from letta.schemas.job import Job
from letta.schemas.letta_message import LettaMessage
from letta.schemas.llm_config import LLMConfig
from letta.schemas.memory import ArchivalMemorySummary, Memory, RecallMemorySummary
from letta.schemas.message import Message, UpdateMessage
from letta.schemas.openai.chat_completion_response import UsageStatistics
from letta.schemas.organization import Organization, OrganizationCreate
from letta.schemas.passage import Passage
from letta.schemas.source import Source, SourceCreate, SourceUpdate
from letta.schemas.tool import Tool, ToolCreate, ToolUpdate
from letta.schemas.usage import LettaUsageStatistics
from letta.schemas.user import User, UserCreate
from letta.utils import create_random_username, json_dumps, json_loads
# from letta.llm_api_tools import openai_get_model_list, azure_openai_get_model_list, smart_urljoin
logger = get_logger(__name__)
class Server(object):
"""Abstract server class that supports multi-agent multi-user"""
@abstractmethod
def list_agents(self, user_id: str) -> dict:
"""List all available agents to a user"""
raise NotImplementedError
@abstractmethod
def get_agent_messages(self, user_id: str, agent_id: str, start: int, count: int) -> list:
"""Paginated query of in-context messages in agent message queue"""
raise NotImplementedError
@abstractmethod
def get_agent_memory(self, user_id: str, agent_id: str) -> dict:
"""Return the memory of an agent (core memory + non-core statistics)"""
raise NotImplementedError
@abstractmethod
def get_agent_state(self, user_id: str, agent_id: str) -> dict:
"""Return the config of an agent"""
raise NotImplementedError
@abstractmethod
def get_server_config(self, user_id: str) -> dict:
"""Return the base config"""
raise NotImplementedError
@abstractmethod
def update_agent_core_memory(self, user_id: str, agent_id: str, new_memory_contents: dict) -> dict:
"""Update the agents core memory block, return the new state"""
raise NotImplementedError
@abstractmethod
def create_agent(
self,
user_id: str,
agent_config: Union[dict, AgentState],
interface: Union[AgentInterface, None],
) -> str:
"""Create a new agent using a config"""
raise NotImplementedError
@abstractmethod
def user_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process a message from the user, internally calls step"""
raise NotImplementedError
@abstractmethod
def system_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process a message from the system, internally calls step"""
raise NotImplementedError
@abstractmethod
def run_command(self, user_id: str, agent_id: str, command: str) -> Union[str, None]:
"""Run a command on the agent, e.g. /memory
May return a string with a message generated by the command
"""
raise NotImplementedError
from sqlalchemy import create_engine
from sqlalchemy.orm import declarative_base, sessionmaker
from letta.agent_store.db import MessageModel, PassageModel
from letta.config import LettaConfig
# NOTE: hack to see if single session management works
from letta.metadata import (
AgentModel,
AgentSourceMappingModel,
APIKeyModel,
BlockModel,
JobModel,
OrganizationModel,
SourceModel,
ToolModel,
UserModel,
)
from letta.settings import settings
config = LettaConfig.load()
if settings.letta_pg_uri_no_default:
config.recall_storage_type = "postgres"
config.recall_storage_uri = settings.letta_pg_uri_no_default
config.archival_storage_type = "postgres"
config.archival_storage_uri = settings.letta_pg_uri_no_default
# create engine
engine = create_engine(settings.letta_pg_uri)
else:
# TODO: don't rely on config storage
engine = create_engine("sqlite:///" + os.path.join(config.recall_storage_path, "sqlite.db"))
Base = declarative_base()
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base.metadata.create_all(
engine,
tables=[
UserModel.__table__,
AgentModel.__table__,
SourceModel.__table__,
AgentSourceMappingModel.__table__,
APIKeyModel.__table__,
BlockModel.__table__,
ToolModel.__table__,
JobModel.__table__,
PassageModel.__table__,
MessageModel.__table__,
OrganizationModel.__table__,
],
)
# Dependency
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
from contextlib import contextmanager
db_context = contextmanager(get_db)
class SyncServer(Server):
"""Simple single-threaded / blocking server process"""
def __init__(
self,
chaining: bool = True,
max_chaining_steps: bool = None,
default_interface_factory: Callable[[], AgentInterface] = lambda: CLIInterface(),
# default_interface: AgentInterface = CLIInterface(),
# default_persistence_manager_cls: PersistenceManager = LocalStateManager,
# auth_mode: str = "none", # "none, "jwt", "external"
):
"""Server process holds in-memory agents that are being run"""
# List of {'user_id': user_id, 'agent_id': agent_id, 'agent': agent_obj} dicts
self.active_agents = []
# chaining = whether or not to run again if request_heartbeat=true
self.chaining = chaining
# if chaining == true, what's the max number of times we'll chain before yielding?
# none = no limit, can go on forever
self.max_chaining_steps = max_chaining_steps
# The default interface that will get assigned to agents ON LOAD
self.default_interface_factory = default_interface_factory
# self.default_interface = default_interface
# self.default_interface = default_interface_cls()
# Initialize the connection to the DB
# try:
# self.config = LettaConfig.load()
# assert self.config.default_llm_config is not None, "default_llm_config must be set in the config"
# assert self.config.default_embedding_config is not None, "default_embedding_config must be set in the config"
# except Exception as e:
# # TODO: very hacky - need to improve model config for docker container
# if os.getenv("OPENAI_API_KEY") is None:
# logger.error("No OPENAI_API_KEY environment variable set and no ~/.letta/config")
# raise e
# from letta.cli.cli import QuickstartChoice, quickstart
# quickstart(backend=QuickstartChoice.openai, debug=False, terminal=False, latest=False)
# self.config = LettaConfig.load()
# self.config.save()
# TODO figure out how to handle credentials for the server
self.credentials = LettaCredentials.load()
# Generate default LLM/Embedding configs for the server
# TODO: we may also want to do the same thing with default persona/human/etc.
self.server_llm_config = settings.llm_config
self.server_embedding_config = settings.embedding_config
# self.server_llm_config = LLMConfig(
# model=self.config.default_llm_config.model,
# model_endpoint_type=self.config.default_llm_config.model_endpoint_type,
# model_endpoint=self.config.default_llm_config.model_endpoint,
# model_wrapper=self.config.default_llm_config.model_wrapper,
# context_window=self.config.default_llm_config.context_window,
# )
# self.server_embedding_config = EmbeddingConfig(
# embedding_endpoint_type=self.config.default_embedding_config.embedding_endpoint_type,
# embedding_endpoint=self.config.default_embedding_config.embedding_endpoint,
# embedding_dim=self.config.default_embedding_config.embedding_dim,
# embedding_model=self.config.default_embedding_config.embedding_model,
# embedding_chunk_size=self.config.default_embedding_config.embedding_chunk_size,
# )
assert self.server_embedding_config.embedding_model is not None, vars(self.server_embedding_config)
# Override config values with settings
# Initialize the metadata store
config = LettaConfig.load()
if settings.letta_pg_uri_no_default:
config.recall_storage_type = "postgres"
config.recall_storage_uri = settings.letta_pg_uri_no_default
config.archival_storage_type = "postgres"
config.archival_storage_uri = settings.letta_pg_uri_no_default
config.default_llm_config = self.server_llm_config
config.default_embedding_config = self.server_embedding_config
config.save()
self.config = config
self.ms = MetadataStore(self.config)
# TODO: this should be removed
# add global default tools (for admin)
self.add_default_tools(module_name="base")
def save_agents(self):
"""Saves all the agents that are in the in-memory object store"""
for agent_d in self.active_agents:
try:
save_agent(agent_d["agent"], self.ms)
logger.debug(f"Saved agent {agent_d['agent_id']}")
except Exception as e:
logger.exception(f"Error occurred while trying to save agent {agent_d['agent_id']}:\n{e}")
def _get_agent(self, user_id: str, agent_id: str) -> Union[Agent, None]:
"""Get the agent object from the in-memory object store"""
for d in self.active_agents:
if d["user_id"] == str(user_id) and d["agent_id"] == str(agent_id):
return d["agent"]
return None
def _add_agent(self, user_id: str, agent_id: str, agent_obj: Agent) -> None:
"""Put an agent object inside the in-memory object store"""
# Make sure the agent doesn't already exist
if self._get_agent(user_id=user_id, agent_id=agent_id) is not None:
# Can be triggered on concucrent request, so don't throw a full error
logger.exception(f"Agent (user={user_id}, agent={agent_id}) is already loaded")
return
# Add Agent instance to the in-memory list
self.active_agents.append(
{
"user_id": str(user_id),
"agent_id": str(agent_id),
"agent": agent_obj,
}
)
def _load_agent(self, user_id: str, agent_id: str, interface: Union[AgentInterface, None] = None) -> Agent:
"""Loads a saved agent into memory (if it doesn't exist, throw an error)"""
assert isinstance(user_id, str), user_id
assert isinstance(agent_id, str), agent_id
# If an interface isn't specified, use the default
if interface is None:
interface = self.default_interface_factory()
try:
logger.debug(f"Grabbing agent user_id={user_id} agent_id={agent_id} from database")
agent_state = self.ms.get_agent(agent_id=agent_id, user_id=user_id)
if not agent_state:
logger.exception(f"agent_id {agent_id} does not exist")
raise ValueError(f"agent_id {agent_id} does not exist")
# Instantiate an agent object using the state retrieved
logger.debug(f"Creating an agent object")
tool_objs = []
for name in agent_state.tools:
tool_obj = self.ms.get_tool(tool_name=name, user_id=user_id)
if not tool_obj:
logger.exception(f"Tool {name} does not exist for user {user_id}")
raise ValueError(f"Tool {name} does not exist for user {user_id}")
tool_objs.append(tool_obj)
# Make sure the memory is a memory object
assert isinstance(agent_state.memory, Memory)
letta_agent = Agent(agent_state=agent_state, interface=interface, tools=tool_objs)
# Add the agent to the in-memory store and return its reference
logger.debug(f"Adding agent to the agent cache: user_id={user_id}, agent_id={agent_id}")
self._add_agent(user_id=user_id, agent_id=agent_id, agent_obj=letta_agent)
return letta_agent
except Exception as e:
logger.exception(f"Error occurred while trying to get agent {agent_id}:\n{e}")
raise
def _get_or_load_agent(self, agent_id: str) -> Agent:
"""Check if the agent is in-memory, then load"""
agent_state = self.ms.get_agent(agent_id=agent_id)
if not agent_state:
raise ValueError(f"Agent does not exist")
user_id = agent_state.user_id
logger.debug(f"Checking for agent user_id={user_id} agent_id={agent_id}")
# TODO: consider disabling loading cached agents due to potential concurrency issues
letta_agent = self._get_agent(user_id=user_id, agent_id=agent_id)
if not letta_agent:
logger.debug(f"Agent not loaded, loading agent user_id={user_id} agent_id={agent_id}")
letta_agent = self._load_agent(user_id=user_id, agent_id=agent_id)
return letta_agent
def _step(self, user_id: str, agent_id: str, input_message: Union[str, Message], timestamp: Optional[datetime]) -> LettaUsageStatistics:
"""Send the input message through the agent"""
logger.debug(f"Got input message: {input_message}")
try:
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
if letta_agent is None:
raise KeyError(f"Agent (user={user_id}, agent={agent_id}) is not loaded")
# Determine whether or not to token stream based on the capability of the interface
token_streaming = letta_agent.interface.streaming_mode if hasattr(letta_agent.interface, "streaming_mode") else False
logger.debug(f"Starting agent step")
no_verify = True
next_input_message = input_message
counter = 0
total_usage = UsageStatistics()
step_count = 0
while True:
step_response = letta_agent.step(
next_input_message,
first_message=False,
skip_verify=no_verify,
return_dicts=False,
stream=token_streaming,
timestamp=timestamp,
ms=self.ms,
)
step_response.messages
heartbeat_request = step_response.heartbeat_request
function_failed = step_response.function_failed
token_warning = step_response.in_context_memory_warning
usage = step_response.usage
step_count += 1
total_usage += usage
counter += 1
letta_agent.interface.step_complete()
logger.debug("Saving agent state")
# save updated state
save_agent(letta_agent, self.ms)
# Chain stops
if not self.chaining:
logger.debug("No chaining, stopping after one step")
break
elif self.max_chaining_steps is not None and counter > self.max_chaining_steps:
logger.debug(f"Hit max chaining steps, stopping after {counter} steps")
break
# Chain handlers
elif token_warning:
next_input_message = system.get_token_limit_warning()
continue # always chain
elif function_failed:
next_input_message = system.get_heartbeat(constants.FUNC_FAILED_HEARTBEAT_MESSAGE)
continue # always chain
elif heartbeat_request:
next_input_message = system.get_heartbeat(constants.REQ_HEARTBEAT_MESSAGE)
continue # always chain
# Letta no-op / yield
else:
break
except Exception as e:
logger.error(f"Error in server._step: {e}")
print(traceback.print_exc())
raise
finally:
logger.debug("Calling step_yield()")
letta_agent.interface.step_yield()
return LettaUsageStatistics(**total_usage.dict(), step_count=step_count)
def _command(self, user_id: str, agent_id: str, command: str) -> LettaUsageStatistics:
"""Process a CLI command"""
logger.debug(f"Got command: {command}")
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
usage = None
if command.lower() == "exit":
# exit not supported on server.py
raise ValueError(command)
elif command.lower() == "save" or command.lower() == "savechat":
save_agent(letta_agent, self.ms)
elif command.lower() == "attach":
# Different from CLI, we extract the data source name from the command
command = command.strip().split()
try:
data_source = int(command[1])
except:
raise ValueError(command)
# attach data to agent from source
source_connector = StorageConnector.get_storage_connector(TableType.PASSAGES, self.config, user_id=user_id)
letta_agent.attach_source(data_source, source_connector, self.ms)
elif command.lower() == "dump" or command.lower().startswith("dump "):
# Check if there's an additional argument that's an integer
command = command.strip().split()
amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 0
if amount == 0:
letta_agent.interface.print_messages(letta_agent.messages, dump=True)
else:
letta_agent.interface.print_messages(letta_agent.messages[-min(amount, len(letta_agent.messages)) :], dump=True)
elif command.lower() == "dumpraw":
letta_agent.interface.print_messages_raw(letta_agent.messages)
elif command.lower() == "memory":
ret_str = (
f"\nDumping memory contents:\n"
+ f"\n{str(letta_agent.memory)}"
+ f"\n{str(letta_agent.persistence_manager.archival_memory)}"
+ f"\n{str(letta_agent.persistence_manager.recall_memory)}"
)
return ret_str
elif command.lower() == "pop" or command.lower().startswith("pop "):
# Check if there's an additional argument that's an integer
command = command.strip().split()
pop_amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 3
n_messages = len(letta_agent.messages)
MIN_MESSAGES = 2
if n_messages <= MIN_MESSAGES:
logger.debug(f"Agent only has {n_messages} messages in stack, none left to pop")
elif n_messages - pop_amount < MIN_MESSAGES:
logger.debug(f"Agent only has {n_messages} messages in stack, cannot pop more than {n_messages - MIN_MESSAGES}")
else:
logger.debug(f"Popping last {pop_amount} messages from stack")
for _ in range(min(pop_amount, len(letta_agent.messages))):
letta_agent.messages.pop()
elif command.lower() == "retry":
# TODO this needs to also modify the persistence manager
logger.debug(f"Retrying for another answer")
while len(letta_agent.messages) > 0:
if letta_agent.messages[-1].get("role") == "user":
# we want to pop up to the last user message and send it again
letta_agent.messages[-1].get("content")
letta_agent.messages.pop()
break
letta_agent.messages.pop()
elif command.lower() == "rethink" or command.lower().startswith("rethink "):
# TODO this needs to also modify the persistence manager
if len(command) < len("rethink "):
logger.warning("Missing text after the command")
else:
for x in range(len(letta_agent.messages) - 1, 0, -1):
if letta_agent.messages[x].get("role") == "assistant":
text = command[len("rethink ") :].strip()
letta_agent.messages[x].update({"content": text})
break
elif command.lower() == "rewrite" or command.lower().startswith("rewrite "):
# TODO this needs to also modify the persistence manager
if len(command) < len("rewrite "):
logger.warning("Missing text after the command")
else:
for x in range(len(letta_agent.messages) - 1, 0, -1):
if letta_agent.messages[x].get("role") == "assistant":
text = command[len("rewrite ") :].strip()
args = json_loads(letta_agent.messages[x].get("function_call").get("arguments"))
args["message"] = text
letta_agent.messages[x].get("function_call").update({"arguments": json_dumps(args)})
break
# No skip options
elif command.lower() == "wipe":
# exit not supported on server.py
raise ValueError(command)
elif command.lower() == "heartbeat":
input_message = system.get_heartbeat()
usage = self._step(user_id=user_id, agent_id=agent_id, input_message=input_message)
elif command.lower() == "memorywarning":
input_message = system.get_token_limit_warning()
usage = self._step(user_id=user_id, agent_id=agent_id, input_message=input_message)
if not usage:
usage = LettaUsageStatistics()
return usage
def user_message(
self,
user_id: str,
agent_id: str,
message: Union[str, Message],
timestamp: Optional[datetime] = None,
) -> LettaUsageStatistics:
"""Process an incoming user message and feed it through the Letta agent"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Basic input sanitization
if isinstance(message, str):
if len(message) == 0:
raise ValueError(f"Invalid input: '{message}'")
# If the input begins with a command prefix, reject
elif message.startswith("/"):
raise ValueError(f"Invalid input: '{message}'")
packaged_user_message = system.package_user_message(
user_message=message,
time=timestamp.isoformat() if timestamp else None,
)
# NOTE: eventually deprecate and only allow passing Message types
# Convert to a Message object
if timestamp:
message = Message(
user_id=user_id,
agent_id=agent_id,
role="user",
text=packaged_user_message,
created_at=timestamp,
)
else:
message = Message(
user_id=user_id,
agent_id=agent_id,
role="user",
text=packaged_user_message,
)
# Run the agent state forward
usage = self._step(user_id=user_id, agent_id=agent_id, input_message=packaged_user_message, timestamp=timestamp)
return usage
def system_message(
self,
user_id: str,
agent_id: str,
message: Union[str, Message],
timestamp: Optional[datetime] = None,
) -> LettaUsageStatistics:
"""Process an incoming system message and feed it through the Letta agent"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Basic input sanitization
if isinstance(message, str):
if len(message) == 0:
raise ValueError(f"Invalid input: '{message}'")
# If the input begins with a command prefix, reject
elif message.startswith("/"):
raise ValueError(f"Invalid input: '{message}'")
packaged_system_message = system.package_system_message(system_message=message)
# NOTE: eventually deprecate and only allow passing Message types
# Convert to a Message object
if timestamp:
message = Message(
user_id=user_id,
agent_id=agent_id,
role="system",
text=packaged_system_message,
created_at=timestamp,
)
else:
message = Message(
user_id=user_id,
agent_id=agent_id,
role="system",
text=packaged_system_message,
)
if isinstance(message, Message):
# Can't have a null text field
if len(message.text) == 0 or message.text is None:
raise ValueError(f"Invalid input: '{message.text}'")
# If the input begins with a command prefix, reject
elif message.text.startswith("/"):
raise ValueError(f"Invalid input: '{message.text}'")
else:
raise TypeError(f"Invalid input: '{message}' - type {type(message)}")
if timestamp:
# Override the timestamp with what the caller provided
message.created_at = timestamp
# Run the agent state forward
return self._step(user_id=user_id, agent_id=agent_id, input_message=packaged_system_message, timestamp=timestamp)
# @LockingServer.agent_lock_decorator
def run_command(self, user_id: str, agent_id: str, command: str) -> LettaUsageStatistics:
"""Run a command on the agent"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# If the input begins with a command prefix, attempt to process it as a command
if command.startswith("/"):
if len(command) > 1:
command = command[1:] # strip the prefix
return self._command(user_id=user_id, agent_id=agent_id, command=command)
def list_users_paginated(self, cursor: str, limit: int) -> List[User]:
"""List all users"""
# TODO: make this paginated
next_cursor, users = self.ms.get_all_users(cursor, limit)
return next_cursor, users
def create_user(self, request: UserCreate) -> User:
"""Create a new user using a config"""
if not request.name:
# auto-generate a name
request.name = create_random_username()
user = User(name=request.name, org_id=request.org_id)
self.ms.create_user(user)
logger.debug(f"Created new user from config: {user}")
# add default for the user
# TODO: move to org
assert user.id is not None, f"User id is None: {user}"
self.add_default_blocks(user.id)
self.add_default_tools(module_name="base", user_id=user.id)
return user
def create_organization(self, request: OrganizationCreate) -> Organization:
"""Create a new org using a config"""
if not request.name:
# auto-generate a name
request.name = create_random_username()
org = Organization(name=request.name)
self.ms.create_organization(org)
logger.info(f"Created new org from config: {org}")
# add default for the org
# TODO: add default data
return org
def create_agent(
self,
request: CreateAgent,
user_id: str,
# interface
interface: Union[AgentInterface, None] = None,
) -> AgentState:
"""Create a new agent using a config"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if interface is None:
interface = self.default_interface_factory()
# create agent name
if request.name is None:
request.name = create_random_username()
# system debug
if request.system is None:
# TODO: don't hardcode
request.system = gpt_system.get_system_text("memgpt_chat")
logger.debug(f"Attempting to find user: {user_id}")
user = self.ms.get_user(user_id=user_id)
if not user:
raise ValueError(f"cannot find user with associated client id: {user_id}")
try:
# model configuration
llm_config = request.llm_config if request.llm_config else self.server_llm_config
embedding_config = request.embedding_config if request.embedding_config else self.server_embedding_config
# get tools + make sure they exist
tool_objs = []
if request.tools:
for tool_name in request.tools:
tool_obj = self.ms.get_tool(tool_name=tool_name, user_id=user_id)
assert tool_obj, f"Tool {tool_name} does not exist"
tool_objs.append(tool_obj)
assert request.memory is not None
memory_functions = get_memory_functions(request.memory)
for func_name, func in memory_functions.items():
if request.tools and func_name in request.tools:
# tool already added
continue
source_code = parse_source_code(func)
json_schema = generate_schema(func, func_name)
source_type = "python"
tags = ["memory", "memgpt-base"]
tool = self.create_tool(
request=ToolCreate(
source_code=source_code,
source_type=source_type,
tags=tags,
json_schema=json_schema,
user_id=user_id,
),
update=True,
user_id=user_id,
)
tool_objs.append(tool)
if not request.tools:
request.tools = []
request.tools.append(tool.name)
# TODO: save the agent state
agent_state = AgentState(
name=request.name,
user_id=user_id,
tools=request.tools if request.tools else [],
llm_config=llm_config,
embedding_config=embedding_config,
system=request.system,
memory=request.memory,
description=request.description,
metadata_=request.metadata_,
)
agent = Agent(
interface=interface,
agent_state=agent_state,
tools=tool_objs,
# gpt-3.5-turbo tends to omit inner monologue, relax this requirement for now
first_message_verify_mono=True if (llm_config.model is not None and "gpt-4" in llm_config.model) else False,
)
# rebuilding agent memory on agent create in case shared memory blocks
# were specified in the new agent's memory config. we're doing this for two reasons:
# 1. if only the ID of the shared memory block was specified, we can fetch its most recent value
# 2. if the shared block state changed since this agent initialization started, we can be sure to have the latest value
agent.rebuild_memory(force=True, ms=self.ms)
# FIXME: this is a hacky way to get the system prompts injected into agent into the DB
# self.ms.update_agent(agent.agent_state)
except Exception as e:
logger.exception(e)
try:
if agent:
self.ms.delete_agent(agent_id=agent.agent_state.id)
except Exception as delete_e:
logger.exception(f"Failed to delete_agent:\n{delete_e}")
raise e
# save agent
save_agent(agent, self.ms)
logger.debug(f"Created new agent from config: {agent}")
assert isinstance(agent.agent_state.memory, Memory), f"Invalid memory type: {type(agent_state.memory)}"
# return AgentState
return agent.agent_state
def update_agent(
self,
request: UpdateAgentState,
user_id: str,
):
"""Update the agents core memory block, return the new state"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=request.id) is None:
raise ValueError(f"Agent agent_id={request.id} does not exist")
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=request.id)
# update the core memory of the agent
if request.memory:
assert isinstance(request.memory, Memory), type(request.memory)
new_memory_contents = request.memory.to_flat_dict()
_ = self.update_agent_core_memory(user_id=user_id, agent_id=request.id, new_memory_contents=new_memory_contents)
# update the system prompt
if request.system:
letta_agent.update_system_prompt(request.system)
# update in-context messages
if request.message_ids:
# This means the user is trying to change what messages are in the message buffer
# Internally this requires (1) pulling from recall,
# then (2) setting the attributes ._messages and .state.message_ids
letta_agent.set_message_buffer(message_ids=request.message_ids)
# tools
if request.tools:
# Replace tools and also re-link
# (1) get tools + make sure they exist
tool_objs = []
for tool_name in request.tools:
tool_obj = self.ms.get_tool(tool_name=tool_name, user_id=user_id)
assert tool_obj, f"Tool {tool_name} does not exist"
tool_objs.append(tool_obj)
# (2) replace the list of tool names ("ids") inside the agent state
letta_agent.agent_state.tools = request.tools
# (3) then attempt to link the tools modules
letta_agent.link_tools(tool_objs)
# configs
if request.llm_config:
letta_agent.agent_state.llm_config = request.llm_config
if request.embedding_config:
letta_agent.agent_state.embedding_config = request.embedding_config
# other minor updates
if request.name:
letta_agent.agent_state.name = request.name
if request.metadata_:
letta_agent.agent_state.metadata_ = request.metadata_
# save the agent
assert isinstance(letta_agent.memory, Memory)
save_agent(letta_agent, self.ms)
# TODO: probably reload the agent somehow?
return letta_agent.agent_state
def _agent_state_to_config(self, agent_state: AgentState) -> dict:
"""Convert AgentState to a dict for a JSON response"""
assert agent_state is not None
agent_config = {
"id": agent_state.id,
"name": agent_state.name,
"human": agent_state._metadata.get("human", None),
"persona": agent_state._metadata.get("persona", None),
"created_at": agent_state.created_at.isoformat(),
}
return agent_config
def list_agents(
self,
user_id: str,
) -> List[AgentState]:
"""List all available agents to a user"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
agents_states = self.ms.list_agents(user_id=user_id)
return agents_states
# TODO make return type pydantic
def list_agents_legacy(
self,
user_id: str,
) -> dict:
"""List all available agents to a user"""
if user_id is None:
agents_states = self.ms.list_all_agents()
else:
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
agents_states = self.ms.list_agents(user_id=user_id)
agents_states_dicts = [self._agent_state_to_config(state) for state in agents_states]
# TODO add a get_message_obj_from_message_id(...) function
# this would allow grabbing Message.created_by without having to load the agent object
# all_available_tools = self.ms.list_tools(user_id=user_id) # TODO: add back when user-specific
self.ms.list_tools()
for agent_state, return_dict in zip(agents_states, agents_states_dicts):
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(user_id=agent_state.user_id, agent_id=agent_state.id)
# TODO remove this eventually when return type get pydanticfied
# this is to add persona_name and human_name so that the columns in UI can populate
# TODO hack for frontend, remove
# (top level .persona is persona_name, and nested memory.persona is the state)
# TODO: eventually modify this to be contained in the metadata
return_dict["persona"] = agent_state._metadata.get("persona", None)
return_dict["human"] = agent_state._metadata.get("human", None)
# Add information about tools
# TODO letta_agent should really have a field of List[ToolModel]
# then we could just pull that field and return it here
# return_dict["tools"] = [tool for tool in all_available_tools if tool.json_schema in letta_agent.functions]
# get tool info from agent state
tools = []
for tool_name in agent_state.tools:
tool = self.ms.get_tool(tool_name=tool_name, user_id=user_id)
tools.append(tool)
return_dict["tools"] = tools
# Add information about memory (raw core, size of recall, size of archival)
core_memory = letta_agent.memory
recall_memory = letta_agent.persistence_manager.recall_memory
archival_memory = letta_agent.persistence_manager.archival_memory
memory_obj = {
"core_memory": core_memory.to_flat_dict(),
"recall_memory": len(recall_memory) if recall_memory is not None else None,
"archival_memory": len(archival_memory) if archival_memory is not None else None,
}
return_dict["memory"] = memory_obj
# Add information about last run
# NOTE: 'last_run' is just the timestamp on the latest message in the buffer
# Retrieve the Message object via the recall storage or by directly access _messages
last_msg_obj = letta_agent._messages[-1]
return_dict["last_run"] = last_msg_obj.created_at
# Add information about attached sources
sources_ids = self.ms.list_attached_sources(agent_id=agent_state.id)
sources = [self.ms.get_source(source_id=s_id) for s_id in sources_ids]
return_dict["sources"] = [vars(s) for s in sources]
# Sort agents by "last_run" in descending order, most recent first
agents_states_dicts.sort(key=lambda x: x["last_run"], reverse=True)
logger.debug(f"Retrieved {len(agents_states)} agents for user {user_id}")
return {
"num_agents": len(agents_states),
"agents": agents_states_dicts,
}
# blocks
def get_blocks(
self,
user_id: Optional[str] = None,
label: Optional[str] = None,
template: Optional[bool] = None,
name: Optional[str] = None,
id: Optional[str] = None,
) -> Optional[List[Block]]:
return self.ms.get_blocks(user_id=user_id, label=label, template=template, name=name, id=id)
def get_block(self, block_id: str):
blocks = self.get_blocks(id=block_id)
if blocks is None or len(blocks) == 0:
raise ValueError("Block does not exist")
if len(blocks) > 1:
raise ValueError("Multiple blocks with the same id")
return blocks[0]
def create_block(self, request: CreateBlock, user_id: str, update: bool = False) -> Block:
existing_blocks = self.ms.get_blocks(name=request.name, user_id=user_id, template=request.template, label=request.label)
if existing_blocks is not None:
existing_block = existing_blocks[0]
assert len(existing_blocks) == 1
if update:
return self.update_block(UpdateBlock(id=existing_block.id, **vars(request)))
else:
raise ValueError(f"Block with name {request.name} already exists")
block = Block(**vars(request))
self.ms.create_block(block)
return block
def update_block(self, request: UpdateBlock) -> Block:
block = self.get_block(request.id)
block.limit = request.limit if request.limit is not None else block.limit
block.value = request.value if request.value is not None else block.value
block.name = request.name if request.name is not None else block.name
self.ms.update_block(block=block)
return block
def delete_block(self, block_id: str):
block = self.get_block(block_id)
self.ms.delete_block(block_id)
return block
# convert name->id
def get_agent_id(self, name: str, user_id: str):
agent_state = self.ms.get_agent(agent_name=name, user_id=user_id)
if not agent_state:
return None
return agent_state.id
def get_source(self, source_id: str, user_id: str) -> Source:
existing_source = self.ms.get_source(source_id=source_id, user_id=user_id)
if not existing_source:
raise ValueError("Source does not exist")
return existing_source
def get_source_id(self, source_name: str, user_id: str) -> str:
existing_source = self.ms.get_source(source_name=source_name, user_id=user_id)
if not existing_source:
raise ValueError("Source does not exist")
return existing_source.id
def get_agent(self, user_id: str, agent_id: str, agent_name: Optional[str] = None):
"""Get the agent state"""
return self.ms.get_agent(agent_id=agent_id, user_id=user_id)
def get_user(self, user_id: str) -> User:
"""Get the user"""
return self.ms.get_user(user_id=user_id)
def get_agent_memory(self, agent_id: str) -> Memory:
"""Return the memory of an agent (core memory)"""
agent = self._get_or_load_agent(agent_id=agent_id)
return agent.memory
def get_archival_memory_summary(self, agent_id: str) -> ArchivalMemorySummary:
agent = self._get_or_load_agent(agent_id=agent_id)
return ArchivalMemorySummary(size=len(agent.persistence_manager.archival_memory))
def get_recall_memory_summary(self, agent_id: str) -> RecallMemorySummary:
agent = self._get_or_load_agent(agent_id=agent_id)
return RecallMemorySummary(size=len(agent.persistence_manager.recall_memory))
def get_in_context_message_ids(self, agent_id: str) -> List[str]:
"""Get the message ids of the in-context messages in the agent's memory"""
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
return [m.id for m in letta_agent._messages]
def get_in_context_messages(self, agent_id: str) -> List[Message]:
"""Get the in-context messages in the agent's memory"""
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
return letta_agent._messages
def get_agent_message(self, agent_id: str, message_id: str) -> Message:
"""Get a single message from the agent's memory"""
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
message = letta_agent.persistence_manager.recall_memory.storage.get(id=message_id)
return message
def get_agent_messages(
self,
agent_id: str,
start: int,
count: int,
return_message_object: bool = True,
) -> Union[List[Message], List[LettaMessage]]:
"""Paginated query of all messages in agent message queue"""
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
if start < 0 or count < 0:
raise ValueError("Start and count values should be non-negative")
if start + count < len(letta_agent._messages): # messages can be returned from whats in memory
# Reverse the list to make it in reverse chronological order
reversed_messages = letta_agent._messages[::-1]
# Check if start is within the range of the list
if start >= len(reversed_messages):
raise IndexError("Start index is out of range")
# Calculate the end index, ensuring it does not exceed the list length
end_index = min(start + count, len(reversed_messages))
# Slice the list for pagination
messages = reversed_messages[start:end_index]
## Convert to json
## Add a tag indicating in-context or not
# json_messages = [{**record.to_json(), "in_context": True} for record in messages]
else:
# need to access persistence manager for additional messages
db_iterator = letta_agent.persistence_manager.recall_memory.storage.get_all_paginated(page_size=count, offset=start)
# get a single page of messages
# TODO: handle stop iteration
page = next(db_iterator, [])
# return messages in reverse chronological order
messages = sorted(page, key=lambda x: x.created_at, reverse=True)
assert all(isinstance(m, Message) for m in messages)
## Convert to json
## Add a tag indicating in-context or not
# json_messages = [record.to_json() for record in messages]
# in_context_message_ids = [str(m.id) for m in letta_agent._messages]
# for d in json_messages:
# d["in_context"] = True if str(d["id"]) in in_context_message_ids else False
if not return_message_object:
messages = [msg for m in messages for msg in m.to_letta_message()]
return messages
def get_agent_archival(self, user_id: str, agent_id: str, start: int, count: int) -> List[Passage]:
"""Paginated query of all messages in agent archival memory"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
# iterate over records
db_iterator = letta_agent.persistence_manager.archival_memory.storage.get_all_paginated(page_size=count, offset=start)
# get a single page of messages
page = next(db_iterator, [])
return page
def get_agent_archival_cursor(
self,
user_id: str,
agent_id: str,
after: Optional[str] = None,
before: Optional[str] = None,
limit: Optional[int] = 100,
order_by: Optional[str] = "created_at",
reverse: Optional[bool] = False,
) -> List[Passage]:
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
# iterate over recorde
cursor, records = letta_agent.persistence_manager.archival_memory.storage.get_all_cursor(
after=after, before=before, limit=limit, order_by=order_by, reverse=reverse
)
return records
def insert_archival_memory(self, user_id: str, agent_id: str, memory_contents: str) -> List[Passage]:
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
# Insert into archival memory
passage_ids = letta_agent.persistence_manager.archival_memory.insert(memory_string=memory_contents, return_ids=True)
# TODO: this is gross, fix
return [letta_agent.persistence_manager.archival_memory.storage.get(id=passage_id) for passage_id in passage_ids]
def delete_archival_memory(self, user_id: str, agent_id: str, memory_id: str):
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# TODO: should return a passage
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
# Delete by ID
# TODO check if it exists first, and throw error if not
letta_agent.persistence_manager.archival_memory.storage.delete({"id": memory_id})
# TODO: return archival memory
def get_agent_recall_cursor(
self,
user_id: str,
agent_id: str,
after: Optional[str] = None,
before: Optional[str] = None,
limit: Optional[int] = 100,
order_by: Optional[str] = "created_at",
order: Optional[str] = "asc",
reverse: Optional[bool] = False,
return_message_object: bool = True,
) -> Union[List[Message], List[LettaMessage]]:
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
# iterate over records
cursor, records = letta_agent.persistence_manager.recall_memory.storage.get_all_cursor(
after=after, before=before, limit=limit, order_by=order_by, reverse=reverse
)
assert all(isinstance(m, Message) for m in records)
if not return_message_object:
# If we're GETing messages in reverse, we need to reverse the inner list (generated by to_letta_message)
if reverse:
records = [msg for m in records for msg in m.to_letta_message()[::-1]]
else:
records = [msg for m in records for msg in m.to_letta_message()]
return records
def get_agent_state(self, user_id: str, agent_id: Optional[str], agent_name: Optional[str] = None) -> Optional[AgentState]:
"""Return the config of an agent"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if agent_id:
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
return None
else:
agent_state = self.ms.get_agent(agent_name=agent_name, user_id=user_id)
if agent_state is None:
raise ValueError(f"Agent agent_name={agent_name} does not exist")
agent_id = agent_state.id
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
assert isinstance(letta_agent.memory, Memory)
assert isinstance(letta_agent.agent_state.memory, Memory)
return letta_agent.agent_state.model_copy(deep=True)
def get_server_config(self, include_defaults: bool = False) -> dict:
"""Return the base config"""
def clean_keys(config):
config_copy = config.copy()
for k, v in config.items():
if k == "key" or "_key" in k:
config_copy[k] = server_utils.shorten_key_middle(v, chars_each_side=5)
return config_copy
# TODO: do we need a seperate server config?
base_config = vars(self.config)
clean_base_config = clean_keys(base_config)
clean_base_config_default_llm_config_dict = vars(clean_base_config["default_llm_config"])
clean_base_config_default_embedding_config_dict = vars(clean_base_config["default_embedding_config"])
clean_base_config["default_llm_config"] = clean_base_config_default_llm_config_dict
clean_base_config["default_embedding_config"] = clean_base_config_default_embedding_config_dict
response = {"config": clean_base_config}
if include_defaults:
default_config = vars(LettaConfig())
clean_default_config = clean_keys(default_config)
clean_default_config["default_llm_config"] = clean_base_config_default_llm_config_dict
clean_default_config["default_embedding_config"] = clean_base_config_default_embedding_config_dict
response["defaults"] = clean_default_config
return response
def get_available_models(self) -> List[LLMConfig]:
"""Poll the LLM endpoint for a list of available models"""
credentials = LettaCredentials().load()
try:
model_options = get_model_options(
credentials=credentials,
model_endpoint_type=self.config.default_llm_config.model_endpoint_type,
model_endpoint=self.config.default_llm_config.model_endpoint,
)
return model_options
except Exception as e:
logger.exception(f"Failed to get list of available models from LLM endpoint:\n{str(e)}")
raise
def update_agent_core_memory(self, user_id: str, agent_id: str, new_memory_contents: dict) -> Memory:
"""Update the agents core memory block, return the new state"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
# old_core_memory = self.get_agent_memory(agent_id=agent_id)
modified = False
for key, value in new_memory_contents.items():
if letta_agent.memory.get_block(key) is None:
# raise ValueError(f"Key {key} not found in agent memory {list(letta_agent.memory.list_block_names())}")
raise ValueError(f"Key {key} not found in agent memory {str(letta_agent.memory.memory)}")
if value is None:
continue
if letta_agent.memory.get_block(key) != value:
letta_agent.memory.update_block_value(name=key, value=value) # update agent memory
modified = True
# If we modified the memory contents, we need to rebuild the memory block inside the system message
if modified:
letta_agent.rebuild_memory()
# save agent
save_agent(letta_agent, self.ms)
return self.ms.get_agent(agent_id=agent_id).memory
def rename_agent(self, user_id: str, agent_id: str, new_agent_name: str) -> AgentState:
"""Update the name of the agent in the database"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
current_name = letta_agent.agent_state.name
if current_name == new_agent_name:
raise ValueError(f"New name ({new_agent_name}) is the same as the current name")
try:
letta_agent.agent_state.name = new_agent_name
self.ms.update_agent(agent=letta_agent.agent_state)
except Exception as e:
logger.exception(f"Failed to update agent name with:\n{str(e)}")
raise ValueError(f"Failed to update agent name in database")
assert isinstance(letta_agent.agent_state.id, str)
return letta_agent.agent_state
def delete_user(self, user_id: str):
# TODO: delete user
pass
def delete_agent(self, user_id: str, agent_id: str):
"""Delete an agent in the database"""
if self.ms.get_user(user_id=user_id) is None:
raise ValueError(f"User user_id={user_id} does not exist")
if self.ms.get_agent(agent_id=agent_id, user_id=user_id) is None:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Verify that the agent exists and is owned by the user
agent_state = self.ms.get_agent(agent_id=agent_id, user_id=user_id)
if not agent_state:
raise ValueError(f"Could not find agent_id={agent_id} under user_id={user_id}")
if agent_state.user_id != user_id:
raise ValueError(f"Could not authorize agent_id={agent_id} with user_id={user_id}")
# First, if the agent is in the in-memory cache we should remove it
# List of {'user_id': user_id, 'agent_id': agent_id, 'agent': agent_obj} dicts
try:
self.active_agents = [d for d in self.active_agents if str(d["agent_id"]) != str(agent_id)]
except Exception as e:
logger.exception(f"Failed to delete agent {agent_id} from cache via ID with:\n{str(e)}")
raise ValueError(f"Failed to delete agent {agent_id} from cache")
# Next, attempt to delete it from the actual database
try:
self.ms.delete_agent(agent_id=agent_id)
except Exception as e:
logger.exception(f"Failed to delete agent {agent_id} via ID with:\n{str(e)}")
raise ValueError(f"Failed to delete agent {agent_id} in database")
def authenticate_user(self) -> str:
# TODO: Implement actual authentication to enable multi user setup
return str(LettaConfig.load().anon_clientid)
def api_key_to_user(self, api_key: str) -> str:
"""Decode an API key to a user"""
user = self.ms.get_user_from_api_key(api_key=api_key)
if user is None:
raise HTTPException(status_code=403, detail="Invalid credentials")
else:
return user.id
def create_api_key(self, request: APIKeyCreate) -> APIKey: # TODO: add other fields
"""Create a new API key for a user"""
if request.name is None:
request.name = f"API Key {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
token = self.ms.create_api_key(user_id=request.user_id, name=request.name)
return token
def list_api_keys(self, user_id: str) -> List[APIKey]:
"""List all API keys for a user"""
return self.ms.get_all_api_keys_for_user(user_id=user_id)
def delete_api_key(self, api_key: str) -> APIKey:
api_key_obj = self.ms.get_api_key(api_key=api_key)
if api_key_obj is None:
raise ValueError("API key does not exist")
self.ms.delete_api_key(api_key=api_key)
return api_key_obj
def create_source(self, request: SourceCreate, user_id: str) -> Source: # TODO: add other fields
"""Create a new data source"""
source = Source(
name=request.name,
user_id=user_id,
embedding_config=self.config.default_embedding_config,
)
self.ms.create_source(source)
assert self.ms.get_source(source_name=request.name, user_id=user_id) is not None, f"Failed to create source {request.name}"
return source
def update_source(self, request: SourceUpdate, user_id: str) -> Source:
"""Update an existing data source"""
if not request.id:
existing_source = self.ms.get_source(source_name=request.name, user_id=user_id)
else:
existing_source = self.ms.get_source(source_id=request.id)
if not existing_source:
raise ValueError("Source does not exist")
# override updated fields
if request.name:
existing_source.name = request.name
if request.metadata_:
existing_source.metadata_ = request.metadata_
if request.description:
existing_source.description = request.description
self.ms.update_source(existing_source)
return existing_source
def delete_source(self, source_id: str, user_id: str):
"""Delete a data source"""
source = self.ms.get_source(source_id=source_id, user_id=user_id)
self.ms.delete_source(source_id)
# delete data from passage store
passage_store = StorageConnector.get_storage_connector(TableType.PASSAGES, self.config, user_id=user_id)
passage_store.delete({"source_id": source_id})
# TODO: delete data from agent passage stores (?)
def create_job(self, user_id: str, metadata: Optional[Dict] = None) -> Job:
"""Create a new job"""
job = Job(
user_id=user_id,
status=JobStatus.created,
metadata_=metadata,
)
self.ms.create_job(job)
return job
def delete_job(self, job_id: str):
"""Delete a job"""
self.ms.delete_job(job_id)
def get_job(self, job_id: str) -> Job:
"""Get a job"""
return self.ms.get_job(job_id)
def list_jobs(self, user_id: str) -> List[Job]:
"""List all jobs for a user"""
return self.ms.list_jobs(user_id=user_id)
def list_active_jobs(self, user_id: str) -> List[Job]:
"""List all active jobs for a user"""
jobs = self.ms.list_jobs(user_id=user_id)
return [job for job in jobs if job.status in [JobStatus.created, JobStatus.running]]
def load_file_to_source(self, source_id: str, file_path: str, job_id: str) -> Job:
# update job
job = self.ms.get_job(job_id)
job.status = JobStatus.running
self.ms.update_job(job)
# try:
from letta.data_sources.connectors import DirectoryConnector
source = self.ms.get_source(source_id=source_id)
connector = DirectoryConnector(input_files=[file_path])
num_passages, num_documents = self.load_data(user_id=source.user_id, source_name=source.name, connector=connector)
# except Exception as e:
# # job failed with error
# error = str(e)
# print(error)
# job.status = JobStatus.failed
# job.metadata_["error"] = error
# self.ms.update_job(job)
# # TODO: delete any associated passages/documents?
# # return failed job
# return job
# update job status
job.status = JobStatus.completed
job.metadata_["num_passages"] = num_passages
job.metadata_["num_documents"] = num_documents
self.ms.update_job(job)
return job
def load_data(
self,
user_id: str,
connector: DataConnector,
source_name: str,
) -> Tuple[int, int]:
"""Load data from a DataConnector into a source for a specified user_id"""
# TODO: this should be implemented as a batch job or at least async, since it may take a long time
# load data from a data source into the document store
source = self.ms.get_source(source_name=source_name, user_id=user_id)
if source is None:
raise ValueError(f"Data source {source_name} does not exist for user {user_id}")
# get the data connectors
passage_store = StorageConnector.get_storage_connector(TableType.PASSAGES, self.config, user_id=user_id)
# TODO: add document store support
document_store = None # StorageConnector.get_storage_connector(TableType.DOCUMENTS, self.config, user_id=user_id)
# load data into the document store
passage_count, document_count = load_data(connector, source, passage_store, document_store)
return passage_count, document_count
def attach_source_to_agent(
self,
user_id: str,
agent_id: str,
# source_id: str,
source_id: Optional[str] = None,
source_name: Optional[str] = None,
) -> Source:
# attach a data source to an agent
data_source = self.ms.get_source(source_id=source_id, user_id=user_id, source_name=source_name)
if data_source is None:
raise ValueError(f"Data source id={source_id} name={source_name} does not exist for user_id {user_id}")
# get connection to data source storage
source_connector = StorageConnector.get_storage_connector(TableType.PASSAGES, self.config, user_id=user_id)
# load agent
agent = self._get_or_load_agent(agent_id=agent_id)
# attach source to agent
agent.attach_source(data_source.id, source_connector, self.ms)
return data_source
def detach_source_from_agent(
self,
user_id: str,
agent_id: str,
# source_id: str,
source_id: Optional[str] = None,
source_name: Optional[str] = None,
) -> Source:
if not source_id:
assert source_name is not None, "source_name must be provided if source_id is not"
source = self.ms.get_source(source_name=source_name, user_id=user_id)
source_id = source.id
else:
source = self.ms.get_source(source_id=source_id)
# delete all Passage objects with source_id==source_id from agent's archival memory
agent = self._get_or_load_agent(agent_id=agent_id)
archival_memory = agent.persistence_manager.archival_memory
archival_memory.storage.delete({"source_id": source_id})
return source
def list_attached_sources(self, agent_id: str) -> List[Source]:
# list all attached sources to an agent
return self.ms.list_attached_sources(agent_id)
def list_data_source_passages(self, user_id: str, source_id: str) -> List[Passage]:
warnings.warn("list_data_source_passages is not yet implemented, returning empty list.", category=UserWarning)
return []
def list_data_source_documents(self, user_id: str, source_id: str) -> List[Document]:
warnings.warn("list_data_source_documents is not yet implemented, returning empty list.", category=UserWarning)
return []
def list_all_sources(self, user_id: str) -> List[Source]:
"""List all sources (w/ extra metadata) belonging to a user"""
sources = self.ms.list_sources(user_id=user_id)
# Add extra metadata to the sources
sources_with_metadata = []
for source in sources:
# count number of passages
passage_conn = StorageConnector.get_storage_connector(TableType.PASSAGES, self.config, user_id=user_id)
num_passages = passage_conn.size({"source_id": source.id})
# TODO: add when documents table implemented
## count number of documents
# document_conn = StorageConnector.get_storage_connector(TableType.DOCUMENTS, self.config, user_id=user_id)
# num_documents = document_conn.size({"data_source": source.name})
num_documents = 0
agent_ids = self.ms.list_attached_agents(source_id=source.id)
# add the agent name information
attached_agents = [
{
"id": str(a_id),
"name": self.ms.get_agent(user_id=user_id, agent_id=a_id).name,
}
for a_id in agent_ids
]
# Overwrite metadata field, should be empty anyways
source.metadata_ = dict(
num_documents=num_documents,
num_passages=num_passages,
attached_agents=attached_agents,
)
sources_with_metadata.append(source)
return sources_with_metadata
def get_tool(self, tool_id: str) -> Optional[Tool]:
"""Get tool by ID."""
return self.ms.get_tool(tool_id=tool_id)
def get_tool_id(self, name: str, user_id: str) -> Optional[str]:
"""Get tool ID from name and user_id."""
tool = self.ms.get_tool(tool_name=name, user_id=user_id)
if not tool or tool.id is None:
return None
return tool.id
def update_tool(
self,
request: ToolUpdate,
) -> Tool:
"""Update an existing tool"""
existing_tool = self.ms.get_tool(tool_id=request.id)
if not existing_tool:
raise ValueError(f"Tool does not exist")
# override updated fields
if request.source_code:
existing_tool.source_code = request.source_code
if request.source_type:
existing_tool.source_type = request.source_type
if request.tags:
existing_tool.tags = request.tags
if request.json_schema:
existing_tool.json_schema = request.json_schema
if request.name:
existing_tool.name = request.name
self.ms.update_tool(existing_tool)
return self.ms.get_tool(tool_id=request.id)
def create_tool(self, request: ToolCreate, user_id: Optional[str] = None, update: bool = True) -> Tool: # TODO: add other fields
"""Create a new tool"""
# NOTE: deprecated code that existed when we were trying to pretend that `self` was the memory object
# if request.tags and "memory" in request.tags:
# # special modifications to memory functions
# # self.memory -> self.memory.memory, since Agent.memory.memory needs to be modified (not BaseMemory.memory)
# request.source_code = request.source_code.replace("self.memory", "self.memory.memory")
if not request.json_schema:
# auto-generate openai schema
try:
env = {}
env.update(globals())
exec(request.source_code, env)
# get available functions
functions = [f for f in env if callable(env[f])]
except Exception as e:
logger.error(f"Failed to execute source code: {e}")
# TODO: not sure if this always works
func = env[functions[-1]]
json_schema = generate_schema(func, request.name)
else:
# provided by client
json_schema = request.json_schema
if not request.name:
# use name from JSON schema
request.name = json_schema["name"]
assert request.name, f"Tool name must be provided in json_schema {json_schema}. This should never happen."
# check if already exists:
existing_tool = self.ms.get_tool(tool_name=request.name, user_id=user_id)
if existing_tool:
if update:
updated_tool = self.update_tool(ToolUpdate(id=existing_tool.id, **vars(request)))
assert updated_tool is not None, f"Failed to update tool {request.name}"
return updated_tool
else:
raise ValueError(f"Tool {request.name} already exists and update=False")
tool = Tool(
name=request.name,
source_code=request.source_code,
source_type=request.source_type,
tags=request.tags,
json_schema=json_schema,
user_id=user_id,
)
self.ms.create_tool(tool)
created_tool = self.ms.get_tool(tool_name=request.name, user_id=user_id)
return created_tool
def delete_tool(self, tool_id: str):
"""Delete a tool"""
self.ms.delete_tool(tool_id)
def list_tools(self, user_id: str) -> List[Tool]:
"""List tools available to user_id"""
tools = self.ms.list_tools(user_id)
return tools
def add_default_tools(self, module_name="base", user_id: Optional[str] = None):
"""Add default tools in {module_name}.py"""
full_module_name = f"letta.functions.function_sets.{module_name}"
try:
module = importlib.import_module(full_module_name)
except Exception as e:
# Handle other general exceptions
raise e
try:
# Load the function set
functions_to_schema = load_function_set(module)
except ValueError as e:
err = f"Error loading function set '{module_name}': {e}"
# create tool in db
for name, schema in functions_to_schema.items():
# print([str(inspect.getsource(line)) for line in schema["imports"]])
source_code = inspect.getsource(schema["python_function"])
tags = [module_name]
if module_name == "base":
tags.append("letta-base")
# create to tool
self.create_tool(
ToolCreate(
name=name,
tags=tags,
source_type="python",
module=schema["module"],
source_code=source_code,
json_schema=schema["json_schema"],
user_id=user_id,
),
update=True,
)
def add_default_blocks(self, user_id: str):
from letta.utils import list_human_files, list_persona_files
assert user_id is not None, "User ID must be provided"
for persona_file in list_persona_files():
text = open(persona_file, "r", encoding="utf-8").read()
name = os.path.basename(persona_file).replace(".txt", "")
self.create_block(CreatePersona(user_id=user_id, name=name, value=text, template=True), user_id=user_id, update=True)
for human_file in list_human_files():
text = open(human_file, "r", encoding="utf-8").read()
name = os.path.basename(human_file).replace(".txt", "")
self.create_block(CreateHuman(user_id=user_id, name=name, value=text, template=True), user_id=user_id, update=True)
def get_agent_message(self, agent_id: str, message_id: str) -> Optional[Message]:
"""Get a single message from the agent's memory"""
# Get the agent object (loaded in memory)
letta_agent = self._get_or_load_agent(agent_id=agent_id)
message = letta_agent.persistence_manager.recall_memory.storage.get(id=message_id)
return message
def update_agent_message(self, agent_id: str, request: UpdateMessage) -> Message:
"""Update the details of a message associated with an agent"""
# Get the current message
letta_agent = self._get_or_load_agent(agent_id=agent_id)
return letta_agent.update_message(request=request)
# TODO decide whether this should be done in the server.py or agent.py
# Reason to put it in agent.py:
# - we use the agent object's persistence_manager to update the message
# - it makes it easy to do things like `retry`, `rethink`, etc.
# Reason to put it in server.py:
# - fundamentally, we should be able to edit a message (without agent id)
# in the server by directly accessing the DB / message store
"""
message = letta_agent.persistence_manager.recall_memory.storage.get(id=request.id)
if message is None:
raise ValueError(f"Message with id {request.id} not found")
# Override fields
# NOTE: we try to do some sanity checking here (see asserts), but it's not foolproof
if request.role:
message.role = request.role
if request.text:
message.text = request.text
if request.name:
message.name = request.name
if request.tool_calls:
assert message.role == MessageRole.assistant, "Tool calls can only be added to assistant messages"
message.tool_calls = request.tool_calls
if request.tool_call_id:
assert message.role == MessageRole.tool, "tool_call_id can only be added to tool messages"
message.tool_call_id = request.tool_call_id
# Save the updated message
letta_agent.persistence_manager.recall_memory.storage.update(record=message)
# Return the updated message
updated_message = letta_agent.persistence_manager.recall_memory.storage.get(id=message.id)
if updated_message is None:
raise ValueError(f"Error persisting message - message with id {request.id} not found")
return updated_message
"""
def rewrite_agent_message(self, agent_id: str, new_text: str) -> Message:
# Get the current message
letta_agent = self._get_or_load_agent(agent_id=agent_id)
return letta_agent.rewrite_message(new_text=new_text)
def rethink_agent_message(self, agent_id: str, new_thought: str) -> Message:
# Get the current message
letta_agent = self._get_or_load_agent(agent_id=agent_id)
return letta_agent.rethink_message(new_thought=new_thought)
def retry_agent_message(self, agent_id: str) -> List[Message]:
# Get the current message
letta_agent = self._get_or_load_agent(agent_id=agent_id)
return letta_agent.retry_message()
def set_current_user(self, user_id: Optional[str]):
"""Very hacky way to set the current user for the server, to be replaced once server becomes stateless
NOTE: clearly not thread-safe, only exists to provide basic user_id support for REST API for now
"""
# Make sure the user_id actually exists
if user_id is not None:
user_obj = self.get_user(user_id)
if not user_obj:
raise ValueError(f"User with id {user_id} not found")
self._current_user = user_id
def get_default_user(self) -> User:
from letta.constants import (
DEFAULT_ORG_ID,
DEFAULT_ORG_NAME,
DEFAULT_USER_ID,
DEFAULT_USER_NAME,
)
# check if default org exists
default_org = self.ms.get_organization(DEFAULT_ORG_ID)
if not default_org:
org = Organization(name=DEFAULT_ORG_NAME, id=DEFAULT_ORG_ID)
self.ms.create_organization(org)
# check if default user exists
default_user = self.get_user(DEFAULT_USER_ID)
if not default_user:
user = User(name=DEFAULT_USER_NAME, org_id=DEFAULT_ORG_ID, id=DEFAULT_USER_ID)
self.ms.create_user(user)
# add default data (TODO: move to org)
self.add_default_blocks(user.id)
self.add_default_tools(module_name="base", user_id=user.id)
# check if default org exists
return self.get_user(DEFAULT_USER_ID)
# TODO(ethan) wire back to real method in future ORM PR
def get_current_user(self) -> User:
"""Returns the currently authed user.
Since server is the core gateway this needs to pass through server as the
first touchpoint.
"""
# Check if _current_user is set and if it's non-null:
if hasattr(self, "_current_user") and self._current_user is not None:
current_user = self.get_user(self._current_user)
if not current_user:
warnings.warn(f"Provided user '{self._current_user}' not found, using default user")
else:
return current_user
return self.get_default_user()
## NOTE: same code as local client to get the default user
# config = LettaConfig.load()
# user_id = config.anon_clientid
# user = self.get_user(user_id)
# if not user:
# user = self.create_user(UserCreate())
# # # update config
# config.anon_clientid = str(user.id)
# config.save()
# return user
def list_models(self) -> List[LLMConfig]:
"""List available models"""
# TODO: allow multiple options from endpoint
# model_options = get_model_options(
# credentials=LettaCredentials().load(),
# model_endpoint_type=settings.llm_endpoint,
# model_endpoint=settings.llm_endpoint_type
# )
return [settings.llm_config]
def list_embedding_models(self) -> List[EmbeddingConfig]:
"""List available embedding models"""
# TODO support multiple models
return [settings.embedding_config]