MemGPT/scripts/migrate_0.3.18.py
Sarah Wooders 85faf5f474
chore: migrate package name to letta (#1775)
Co-authored-by: Charles Packer <packercharles@gmail.com>
Co-authored-by: Shubham Naik <shubham.naik10@gmail.com>
Co-authored-by: Shubham Naik <shub@memgpt.ai>
2024-09-23 09:15:18 -07:00

91 lines
2.6 KiB
Python

import os
import uuid
from sqlalchemy import MetaData, Table, create_engine
from letta import create_client
from letta.config import LettaConfig
from letta.data_types import AgentState, EmbeddingConfig, LLMConfig
from letta.metadata import MetadataStore
from letta.presets.presets import add_default_tools
from letta.prompts import gpt_system
# Replace this with your actual database connection URL
config = LettaConfig.load()
if config.recall_storage_type == "sqlite":
DATABASE_URL = "sqlite:///" + os.path.join(config.recall_storage_path, "sqlite.db")
else:
DATABASE_URL = config.recall_storage_uri
print(DATABASE_URL)
engine = create_engine(DATABASE_URL)
metadata = MetaData()
# defaults
system_prompt = gpt_system.get_system_text("memgpt_chat")
# Reflect the existing table
table = Table("agents", metadata, autoload_with=engine)
# get all agent rows
agent_states = []
with engine.connect() as conn:
agents = conn.execute(table.select()).fetchall()
for agent in agents:
id = uuid.UUID(agent[0])
user_id = uuid.UUID(agent[1])
name = agent[2]
print(f"Migrating agent {name}")
persona = agent[3]
human = agent[4]
system = agent[5]
preset = agent[6]
created_at = agent[7]
llm_config = LLMConfig(**agent[8])
embedding_config = EmbeddingConfig(**agent[9])
state = agent[10]
tools = agent[11]
state["memory"] = {"human": {"value": human, "limit": 2000}, "persona": {"value": persona, "limit": 2000}}
agent_state = AgentState(
id=id,
user_id=user_id,
name=name,
system=system,
created_at=created_at,
llm_config=llm_config,
embedding_config=embedding_config,
state=state,
tools=tools,
_metadata={"human": "migrated", "persona": "migrated"},
)
agent_states.append(agent_state)
# remove agents table
agents_model = Table("agents", metadata, autoload_with=engine)
agents_model.drop(engine)
# remove tool table
tool_model = Table("toolmodel", metadata, autoload_with=engine)
tool_model.drop(engine)
# re-create tables and add default tools
ms = MetadataStore(config)
add_default_tools(None, ms)
print("Tools", [tool.name for tool in ms.list_tools()])
for agent in agent_states:
ms.create_agent(agent)
print(f"Agent {agent.name} migrated successfully!")
# add another agent to create core memory tool
client = create_client()
dummy_agent = client.create_agent(name="dummy_agent")
tools = client.list_tools()
assert "core_memory_append" in [tool.name for tool in tools]
print("Migration completed successfully!")