MemGPT/letta/helpers/tool_execution_helper.py
2025-04-30 16:05:03 -07:00

174 lines
7.4 KiB
Python

from collections import OrderedDict
from typing import Any, Dict, Optional
from letta.constants import COMPOSIO_ENTITY_ENV_VAR_KEY, PRE_EXECUTION_MESSAGE_ARG
from letta.functions.ast_parsers import coerce_dict_args_by_annotations, get_function_annotations_from_source
from letta.functions.composio_helpers import execute_composio_action, generate_composio_action_from_func_name
from letta.helpers.composio_helpers import get_composio_api_key
from letta.orm.enums import ToolType
from letta.schemas.agent import AgentState
from letta.schemas.sandbox_config import SandboxRunResult
from letta.schemas.tool import Tool
from letta.schemas.user import User
from letta.services.tool_executor.tool_execution_sandbox import ToolExecutionSandbox
from letta.utils import get_friendly_error_msg
def enable_strict_mode(tool_schema: Dict[str, Any]) -> Dict[str, Any]:
"""Enables strict mode for a tool schema by setting 'strict' to True and
disallowing additional properties in the parameters.
Args:
tool_schema (Dict[str, Any]): The original tool schema.
Returns:
Dict[str, Any]: A new tool schema with strict mode enabled.
"""
schema = tool_schema.copy()
# Enable strict mode
schema["strict"] = True
# Ensure parameters is a valid dictionary
parameters = schema.get("parameters", {})
if isinstance(parameters, dict) and parameters.get("type") == "object":
# Set additionalProperties to False
parameters["additionalProperties"] = False
schema["parameters"] = parameters
return schema
def add_pre_execution_message(tool_schema: Dict[str, Any], description: Optional[str] = None) -> Dict[str, Any]:
"""Adds a `pre_execution_message` parameter to a tool schema to prompt a natural, human-like message before executing the tool.
Args:
tool_schema (Dict[str, Any]): The original tool schema.
Returns:
Dict[str, Any]: A new tool schema with the `pre_execution_message` field added at the beginning.
"""
schema = tool_schema.copy()
parameters = schema.get("parameters", {})
if not isinstance(parameters, dict) or parameters.get("type") != "object":
return schema # Do not modify if schema is not valid
properties = parameters.get("properties", {})
required = parameters.get("required", [])
# Define the new `pre_execution_message` field
if not description:
# Default description
description = (
"A concise message to be uttered before executing this tool. "
"This should sound natural, as if a person is casually announcing their next action."
"You MUST also include punctuation at the end of this message."
)
pre_execution_message_field = {
"type": "string",
"description": description,
}
# Ensure the pre-execution message is the first field in properties
updated_properties = OrderedDict()
updated_properties[PRE_EXECUTION_MESSAGE_ARG] = pre_execution_message_field
updated_properties.update(properties) # Retain all existing properties
# Ensure pre-execution message is the first required field
if PRE_EXECUTION_MESSAGE_ARG not in required:
required = [PRE_EXECUTION_MESSAGE_ARG] + required
# Update the schema with ordered properties and required list
schema["parameters"] = {
**parameters,
"properties": dict(updated_properties), # Convert OrderedDict back to dict
"required": required,
}
return schema
def remove_request_heartbeat(tool_schema: Dict[str, Any]) -> Dict[str, Any]:
"""Removes the `request_heartbeat` parameter from a tool schema if it exists.
Args:
tool_schema (Dict[str, Any]): The original tool schema.
Returns:
Dict[str, Any]: A new tool schema without `request_heartbeat`.
"""
schema = tool_schema.copy()
parameters = schema.get("parameters", {})
if isinstance(parameters, dict):
properties = parameters.get("properties", {})
required = parameters.get("required", [])
# Remove the `request_heartbeat` property if it exists
if "request_heartbeat" in properties:
properties.pop("request_heartbeat")
# Remove `request_heartbeat` from required fields if present
if "request_heartbeat" in required:
required = [r for r in required if r != "request_heartbeat"]
# Update parameters with modified properties and required list
schema["parameters"] = {**parameters, "properties": properties, "required": required}
return schema
# TODO: Deprecate the `execute_external_tool` function on the agent body
def execute_external_tool(
agent_state: AgentState,
function_name: str,
function_args: dict,
target_letta_tool: Tool,
actor: User,
allow_agent_state_modifications: bool = False,
) -> tuple[Any, Optional[SandboxRunResult]]:
# TODO: need to have an AgentState object that actually has full access to the block data
# this is because the sandbox tools need to be able to access block.value to edit this data
try:
if target_letta_tool.tool_type == ToolType.EXTERNAL_COMPOSIO:
action_name = generate_composio_action_from_func_name(target_letta_tool.name)
# Get entity ID from the agent_state
entity_id = None
for env_var in agent_state.tool_exec_environment_variables:
if env_var.key == COMPOSIO_ENTITY_ENV_VAR_KEY:
entity_id = env_var.value
# Get composio_api_key
composio_api_key = get_composio_api_key(actor=actor)
function_response = execute_composio_action(
action_name=action_name, args=function_args, api_key=composio_api_key, entity_id=entity_id
)
return function_response, None
elif target_letta_tool.tool_type == ToolType.CUSTOM:
# Parse the source code to extract function annotations
annotations = get_function_annotations_from_source(target_letta_tool.source_code, function_name)
# Coerce the function arguments to the correct types based on the annotations
function_args = coerce_dict_args_by_annotations(function_args, annotations)
# execute tool in a sandbox
# TODO: allow agent_state to specify which sandbox to execute tools in
# TODO: This is only temporary, can remove after we publish a pip package with this object
if allow_agent_state_modifications:
agent_state_copy = agent_state.__deepcopy__()
agent_state_copy.tools = []
agent_state_copy.tool_rules = []
else:
agent_state_copy = None
tool_execution_result = ToolExecutionSandbox(function_name, function_args, actor).run(agent_state=agent_state_copy)
function_response, updated_agent_state = tool_execution_result.func_return, tool_execution_result.agent_state
# TODO: Bring this back
# if allow_agent_state_modifications and updated_agent_state is not None:
# self.update_memory_if_changed(updated_agent_state.memory)
return function_response, tool_execution_result
except Exception as e:
# Need to catch error here, or else trunction wont happen
# TODO: modify to function execution error
function_response = get_friendly_error_msg(function_name=function_name, exception_name=type(e).__name__, exception_message=str(e))
return function_response, None