MemGPT/letta/server/server.py
cthomas 1b58fae4fb
chore: bump version 0.7.22 (#2655)
Co-authored-by: Andy Li <55300002+cliandy@users.noreply.github.com>
Co-authored-by: Kevin Lin <klin5061@gmail.com>
Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
Co-authored-by: jnjpng <jin@letta.com>
Co-authored-by: Matthew Zhou <mattzh1314@gmail.com>
2025-05-23 01:13:05 -07:00

2138 lines
94 KiB
Python

import asyncio
import json
import os
import traceback
import warnings
from abc import abstractmethod
from datetime import datetime
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import httpx
from anthropic import AsyncAnthropic
from composio.client import Composio
from composio.client.collections import ActionModel, AppModel
from fastapi import HTTPException
from fastapi.responses import StreamingResponse
import letta.constants as constants
import letta.server.utils as server_utils
import letta.system as system
from letta.agent import Agent, save_agent
from letta.config import LettaConfig
from letta.constants import LETTA_TOOL_EXECUTION_DIR
from letta.data_sources.connectors import DataConnector, load_data
from letta.errors import HandleNotFoundError
from letta.functions.mcp_client.base_client import BaseMCPClient
from letta.functions.mcp_client.sse_client import MCP_CONFIG_TOPLEVEL_KEY, SSEMCPClient
from letta.functions.mcp_client.stdio_client import StdioMCPClient
from letta.functions.mcp_client.types import MCPServerType, MCPTool, SSEServerConfig, StdioServerConfig
from letta.groups.helpers import load_multi_agent
from letta.helpers.datetime_helpers import get_utc_time
from letta.helpers.json_helpers import json_dumps, json_loads
# TODO use custom interface
from letta.interface import AgentInterface # abstract
from letta.interface import CLIInterface # for printing to terminal
from letta.log import get_logger
from letta.orm.errors import NoResultFound
from letta.prompts.gpt_system import get_system_text
from letta.schemas.agent import AgentState, AgentType, CreateAgent, UpdateAgent
from letta.schemas.block import Block, BlockUpdate, CreateBlock
from letta.schemas.embedding_config import EmbeddingConfig
# openai schemas
from letta.schemas.enums import JobStatus, MessageStreamStatus, ProviderCategory, ProviderType
from letta.schemas.environment_variables import SandboxEnvironmentVariableCreate
from letta.schemas.group import GroupCreate, ManagerType, SleeptimeManager, VoiceSleeptimeManager
from letta.schemas.job import Job, JobUpdate
from letta.schemas.letta_message import LegacyLettaMessage, LettaMessage, ToolReturnMessage
from letta.schemas.letta_message_content import TextContent
from letta.schemas.letta_response import LettaResponse
from letta.schemas.llm_config import LLMConfig
from letta.schemas.memory import ArchivalMemorySummary, Memory, RecallMemorySummary
from letta.schemas.message import Message, MessageCreate, MessageUpdate
from letta.schemas.organization import Organization
from letta.schemas.passage import Passage, PassageUpdate
from letta.schemas.providers import (
AnthropicBedrockProvider,
AnthropicProvider,
AzureProvider,
DeepSeekProvider,
GoogleAIProvider,
GoogleVertexProvider,
GroqProvider,
LettaProvider,
LMStudioOpenAIProvider,
OllamaProvider,
OpenAIProvider,
Provider,
TogetherProvider,
VLLMChatCompletionsProvider,
VLLMCompletionsProvider,
XAIProvider,
)
from letta.schemas.sandbox_config import LocalSandboxConfig, SandboxConfigCreate, SandboxType
from letta.schemas.source import Source
from letta.schemas.tool import Tool
from letta.schemas.usage import LettaUsageStatistics
from letta.schemas.user import User
from letta.server.rest_api.chat_completions_interface import ChatCompletionsStreamingInterface
from letta.server.rest_api.interface import StreamingServerInterface
from letta.server.rest_api.utils import sse_async_generator
from letta.services.agent_manager import AgentManager
from letta.services.block_manager import BlockManager
from letta.services.group_manager import GroupManager
from letta.services.helpers.tool_execution_helper import prepare_local_sandbox
from letta.services.identity_manager import IdentityManager
from letta.services.job_manager import JobManager
from letta.services.llm_batch_manager import LLMBatchManager
from letta.services.message_manager import MessageManager
from letta.services.organization_manager import OrganizationManager
from letta.services.passage_manager import PassageManager
from letta.services.provider_manager import ProviderManager
from letta.services.sandbox_config_manager import SandboxConfigManager
from letta.services.source_manager import SourceManager
from letta.services.step_manager import StepManager
from letta.services.telemetry_manager import TelemetryManager
from letta.services.tool_executor.tool_execution_sandbox import ToolExecutionSandbox
from letta.services.tool_manager import ToolManager
from letta.services.user_manager import UserManager
from letta.settings import model_settings, settings, tool_settings
from letta.tracing import log_event, trace_method
from letta.utils import get_friendly_error_msg, get_persona_text, make_key
config = LettaConfig.load()
logger = get_logger(__name__)
class Server(object):
"""Abstract server class that supports multi-agent multi-user"""
@abstractmethod
def list_agents(self, user_id: str) -> dict:
"""List all available agents to a user"""
raise NotImplementedError
@abstractmethod
def get_agent_memory(self, user_id: str, agent_id: str) -> dict:
"""Return the memory of an agent (core memory + non-core statistics)"""
raise NotImplementedError
@abstractmethod
def get_server_config(self, user_id: str) -> dict:
"""Return the base config"""
raise NotImplementedError
@abstractmethod
def update_agent_core_memory(self, user_id: str, agent_id: str, label: str, actor: User) -> Memory:
"""Update the agents core memory block, return the new state"""
raise NotImplementedError
@abstractmethod
def create_agent(
self,
request: CreateAgent,
actor: User,
# interface
interface: Union[AgentInterface, None] = None,
) -> AgentState:
"""Create a new agent using a config"""
raise NotImplementedError
@abstractmethod
def user_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process a message from the user, internally calls step"""
raise NotImplementedError
@abstractmethod
def system_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process a message from the system, internally calls step"""
raise NotImplementedError
@abstractmethod
def send_messages(self, user_id: str, agent_id: str, input_messages: List[MessageCreate]) -> None:
"""Send a list of messages to the agent"""
raise NotImplementedError
@abstractmethod
def run_command(self, user_id: str, agent_id: str, command: str) -> Union[str, None]:
"""Run a command on the agent, e.g. /memory
May return a string with a message generated by the command
"""
raise NotImplementedError
class SyncServer(Server):
"""Simple single-threaded / blocking server process"""
def __init__(
self,
chaining: bool = True,
max_chaining_steps: Optional[int] = 100,
default_interface_factory: Callable[[], AgentInterface] = lambda: CLIInterface(),
init_with_default_org_and_user: bool = True,
# default_interface: AgentInterface = CLIInterface(),
# default_persistence_manager_cls: PersistenceManager = LocalStateManager,
# auth_mode: str = "none", # "none, "jwt", "external"
):
"""Server process holds in-memory agents that are being run"""
# chaining = whether or not to run again if request_heartbeat=true
self.chaining = chaining
# if chaining == true, what's the max number of times we'll chain before yielding?
# none = no limit, can go on forever
self.max_chaining_steps = max_chaining_steps
# The default interface that will get assigned to agents ON LOAD
self.default_interface_factory = default_interface_factory
# Initialize the metadata store
config = LettaConfig.load()
if settings.letta_pg_uri_no_default:
config.recall_storage_type = "postgres"
config.recall_storage_uri = settings.letta_pg_uri_no_default
config.archival_storage_type = "postgres"
config.archival_storage_uri = settings.letta_pg_uri_no_default
config.save()
self.config = config
# Managers that interface with data models
self.organization_manager = OrganizationManager()
self.passage_manager = PassageManager()
self.user_manager = UserManager()
self.tool_manager = ToolManager()
self.block_manager = BlockManager()
self.source_manager = SourceManager()
self.sandbox_config_manager = SandboxConfigManager()
self.message_manager = MessageManager()
self.job_manager = JobManager()
self.agent_manager = AgentManager()
self.provider_manager = ProviderManager()
self.step_manager = StepManager()
self.identity_manager = IdentityManager()
self.group_manager = GroupManager()
self.batch_manager = LLMBatchManager()
self.telemetry_manager = TelemetryManager()
# A resusable httpx client
timeout = httpx.Timeout(connect=10.0, read=20.0, write=10.0, pool=10.0)
limits = httpx.Limits(max_connections=100, max_keepalive_connections=80, keepalive_expiry=300)
self.httpx_client = httpx.AsyncClient(timeout=timeout, follow_redirects=True, limits=limits)
# Make default user and org
if init_with_default_org_and_user:
self.default_org = self.organization_manager.create_default_organization()
self.default_user = self.user_manager.create_default_user()
self.tool_manager.upsert_base_tools(actor=self.default_user)
# Add composio keys to the tool sandbox env vars of the org
if tool_settings.composio_api_key:
manager = SandboxConfigManager()
sandbox_config = manager.get_or_create_default_sandbox_config(sandbox_type=SandboxType.LOCAL, actor=self.default_user)
manager.create_sandbox_env_var(
SandboxEnvironmentVariableCreate(key="COMPOSIO_API_KEY", value=tool_settings.composio_api_key),
sandbox_config_id=sandbox_config.id,
actor=self.default_user,
)
# For OSS users, create a local sandbox config
oss_default_user = self.user_manager.get_default_user()
use_venv = False if not tool_settings.tool_exec_venv_name else True
venv_name = tool_settings.tool_exec_venv_name or "venv"
tool_dir = tool_settings.tool_exec_dir or LETTA_TOOL_EXECUTION_DIR
venv_dir = Path(tool_dir) / venv_name
tool_path = Path(tool_dir)
if tool_path.exists() and not tool_path.is_dir():
logger.error(f"LETTA_TOOL_SANDBOX_DIR exists but is not a directory: {tool_dir}")
else:
if not tool_path.exists():
logger.warning(f"LETTA_TOOL_SANDBOX_DIR does not exist, creating now: {tool_dir}")
tool_path.mkdir(parents=True, exist_ok=True)
if tool_settings.tool_exec_venv_name and not venv_dir.is_dir():
logger.warning(
f"Provided LETTA_TOOL_SANDBOX_VENV_NAME is not a valid venv ({venv_dir}), one will be created for you during tool execution."
)
sandbox_config_create = SandboxConfigCreate(
config=LocalSandboxConfig(sandbox_dir=tool_settings.tool_exec_dir, use_venv=use_venv, venv_name=venv_name)
)
sandbox_config = self.sandbox_config_manager.create_or_update_sandbox_config(
sandbox_config_create=sandbox_config_create, actor=oss_default_user
)
logger.info(f"Successfully created default local sandbox config:\n{sandbox_config.get_local_config().model_dump()}")
if use_venv and tool_settings.tool_exec_autoreload_venv:
prepare_local_sandbox(
sandbox_config.get_local_config(),
env=os.environ.copy(),
force_recreate=True,
)
# collect providers (always has Letta as a default)
self._enabled_providers: List[Provider] = [LettaProvider(name="letta")]
if model_settings.openai_api_key:
self._enabled_providers.append(
OpenAIProvider(
name="openai",
api_key=model_settings.openai_api_key,
base_url=model_settings.openai_api_base,
)
)
if model_settings.anthropic_api_key:
self._enabled_providers.append(
AnthropicProvider(
name="anthropic",
api_key=model_settings.anthropic_api_key,
)
)
if model_settings.ollama_base_url:
self._enabled_providers.append(
OllamaProvider(
name="ollama",
base_url=model_settings.ollama_base_url,
api_key=None,
default_prompt_formatter=model_settings.default_prompt_formatter,
)
)
if model_settings.gemini_api_key:
self._enabled_providers.append(
GoogleAIProvider(
name="google_ai",
api_key=model_settings.gemini_api_key,
)
)
if model_settings.google_cloud_location and model_settings.google_cloud_project:
self._enabled_providers.append(
GoogleVertexProvider(
name="google_vertex",
google_cloud_project=model_settings.google_cloud_project,
google_cloud_location=model_settings.google_cloud_location,
)
)
if model_settings.azure_api_key and model_settings.azure_base_url:
assert model_settings.azure_api_version, "AZURE_API_VERSION is required"
self._enabled_providers.append(
AzureProvider(
name="azure",
api_key=model_settings.azure_api_key,
base_url=model_settings.azure_base_url,
api_version=model_settings.azure_api_version,
)
)
if model_settings.groq_api_key:
self._enabled_providers.append(
GroqProvider(
name="groq",
api_key=model_settings.groq_api_key,
)
)
if model_settings.together_api_key:
self._enabled_providers.append(
TogetherProvider(
name="together",
api_key=model_settings.together_api_key,
default_prompt_formatter=model_settings.default_prompt_formatter,
)
)
if model_settings.vllm_api_base:
# vLLM exposes both a /chat/completions and a /completions endpoint
self._enabled_providers.append(
VLLMCompletionsProvider(
name="vllm",
base_url=model_settings.vllm_api_base,
default_prompt_formatter=model_settings.default_prompt_formatter,
)
)
# NOTE: to use the /chat/completions endpoint, you need to specify extra flags on vLLM startup
# see: https://docs.vllm.ai/en/latest/getting_started/examples/openai_chat_completion_client_with_tools.html
# e.g. "... --enable-auto-tool-choice --tool-call-parser hermes"
self._enabled_providers.append(
VLLMChatCompletionsProvider(
name="vllm",
base_url=model_settings.vllm_api_base,
)
)
if model_settings.aws_access_key and model_settings.aws_secret_access_key and model_settings.aws_region:
self._enabled_providers.append(
AnthropicBedrockProvider(
name="bedrock",
aws_region=model_settings.aws_region,
)
)
# Attempt to enable LM Studio by default
if model_settings.lmstudio_base_url:
# Auto-append v1 to the base URL
lmstudio_url = (
model_settings.lmstudio_base_url
if model_settings.lmstudio_base_url.endswith("/v1")
else model_settings.lmstudio_base_url + "/v1"
)
self._enabled_providers.append(LMStudioOpenAIProvider(name="lmstudio_openai", base_url=lmstudio_url))
if model_settings.deepseek_api_key:
self._enabled_providers.append(DeepSeekProvider(name="deepseek", api_key=model_settings.deepseek_api_key))
if model_settings.xai_api_key:
self._enabled_providers.append(XAIProvider(name="xai", api_key=model_settings.xai_api_key))
# For MCP
"""Initialize the MCP clients (there may be multiple)"""
mcp_server_configs = self.get_mcp_servers()
self.mcp_clients: Dict[str, BaseMCPClient] = {}
for server_name, server_config in mcp_server_configs.items():
if server_config.type == MCPServerType.SSE:
self.mcp_clients[server_name] = SSEMCPClient(server_config)
elif server_config.type == MCPServerType.STDIO:
self.mcp_clients[server_name] = StdioMCPClient(server_config)
else:
raise ValueError(f"Invalid MCP server config: {server_config}")
try:
self.mcp_clients[server_name].connect_to_server()
except Exception as e:
logger.error(e)
self.mcp_clients.pop(server_name)
# Print out the tools that are connected
for server_name, client in self.mcp_clients.items():
logger.info(f"Attempting to fetch tools from MCP server: {server_name}")
mcp_tools = client.list_tools()
logger.info(f"MCP tools connected: {', '.join([t.name for t in mcp_tools])}")
logger.debug(f"MCP tools: {', '.join([str(t) for t in mcp_tools])}")
# TODO: Remove these in memory caches
self._llm_config_cache = {}
self._embedding_config_cache = {}
# TODO: Replace this with the Anthropic client we have in house
self.anthropic_async_client = AsyncAnthropic()
def load_agent(self, agent_id: str, actor: User, interface: Union[AgentInterface, None] = None) -> Agent:
"""Updated method to load agents from persisted storage"""
agent_state = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
# TODO: Think about how to integrate voice sleeptime into sleeptime
# TODO: Voice sleeptime agents turn into normal agents when being messaged
if agent_state.multi_agent_group and agent_state.multi_agent_group.manager_type != ManagerType.voice_sleeptime:
return load_multi_agent(
group=agent_state.multi_agent_group, agent_state=agent_state, actor=actor, interface=interface, mcp_clients=self.mcp_clients
)
interface = interface or self.default_interface_factory()
return Agent(agent_state=agent_state, interface=interface, user=actor, mcp_clients=self.mcp_clients)
def _step(
self,
actor: User,
agent_id: str,
input_messages: List[MessageCreate],
interface: Union[AgentInterface, None] = None, # needed to getting responses
put_inner_thoughts_first: bool = True,
# timestamp: Optional[datetime],
) -> LettaUsageStatistics:
"""Send the input message through the agent"""
# TODO: Thread actor directly through this function, since the top level caller most likely already retrieved the user
logger.debug(f"Got input messages: {input_messages}")
letta_agent = None
try:
letta_agent = self.load_agent(agent_id=agent_id, interface=interface, actor=actor)
if letta_agent is None:
raise KeyError(f"Agent (user={actor.id}, agent={agent_id}) is not loaded")
# Determine whether or not to token stream based on the capability of the interface
token_streaming = letta_agent.interface.streaming_mode if hasattr(letta_agent.interface, "streaming_mode") else False
logger.debug(f"Starting agent step")
if interface:
metadata = interface.metadata if hasattr(interface, "metadata") else None
else:
metadata = None
usage_stats = letta_agent.step(
input_messages=input_messages,
chaining=self.chaining,
max_chaining_steps=self.max_chaining_steps,
stream=token_streaming,
skip_verify=True,
metadata=metadata,
put_inner_thoughts_first=put_inner_thoughts_first,
)
except Exception as e:
logger.error(f"Error in server._step: {e}")
print(traceback.print_exc())
raise
finally:
logger.debug("Calling step_yield()")
if letta_agent:
letta_agent.interface.step_yield()
return usage_stats
def _command(self, user_id: str, agent_id: str, command: str) -> LettaUsageStatistics:
"""Process a CLI command"""
# TODO: Thread actor directly through this function, since the top level caller most likely already retrieved the user
actor = self.user_manager.get_user_or_default(user_id=user_id)
logger.debug(f"Got command: {command}")
# Get the agent object (loaded in memory)
letta_agent = self.load_agent(agent_id=agent_id, actor=actor)
usage = None
if command.lower() == "exit":
# exit not supported on server.py
raise ValueError(command)
elif command.lower() == "save" or command.lower() == "savechat":
save_agent(letta_agent)
elif command.lower() == "attach":
# Different from CLI, we extract the data source name from the command
command = command.strip().split()
try:
data_source = int(command[1])
except:
raise ValueError(command)
# attach data to agent from source
letta_agent.attach_source(
user=self.user_manager.get_user_by_id(user_id=user_id),
source_id=data_source,
source_manager=self.source_manager,
agent_manager=self.agent_manager,
)
elif command.lower() == "dump" or command.lower().startswith("dump "):
# Check if there's an additional argument that's an integer
command = command.strip().split()
amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 0
if amount == 0:
letta_agent.interface.print_messages(letta_agent.messages, dump=True)
else:
letta_agent.interface.print_messages(letta_agent.messages[-min(amount, len(letta_agent.messages)) :], dump=True)
elif command.lower() == "dumpraw":
letta_agent.interface.print_messages_raw(letta_agent.messages)
elif command.lower() == "memory":
ret_str = f"\nDumping memory contents:\n" + f"\n{str(letta_agent.agent_state.memory)}" + f"\n{str(letta_agent.passage_manager)}"
return ret_str
elif command.lower() == "pop" or command.lower().startswith("pop "):
# Check if there's an additional argument that's an integer
command = command.strip().split()
pop_amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 3
n_messages = len(letta_agent.messages)
MIN_MESSAGES = 2
if n_messages <= MIN_MESSAGES:
logger.debug(f"Agent only has {n_messages} messages in stack, none left to pop")
elif n_messages - pop_amount < MIN_MESSAGES:
logger.debug(f"Agent only has {n_messages} messages in stack, cannot pop more than {n_messages - MIN_MESSAGES}")
else:
logger.debug(f"Popping last {pop_amount} messages from stack")
for _ in range(min(pop_amount, len(letta_agent.messages))):
letta_agent.messages.pop()
elif command.lower() == "retry":
# TODO this needs to also modify the persistence manager
logger.debug(f"Retrying for another answer")
while len(letta_agent.messages) > 0:
if letta_agent.messages[-1].get("role") == "user":
# we want to pop up to the last user message and send it again
letta_agent.messages[-1].get("content")
letta_agent.messages.pop()
break
letta_agent.messages.pop()
elif command.lower() == "rethink" or command.lower().startswith("rethink "):
# TODO this needs to also modify the persistence manager
if len(command) < len("rethink "):
logger.warning("Missing text after the command")
else:
for x in range(len(letta_agent.messages) - 1, 0, -1):
if letta_agent.messages[x].get("role") == "assistant":
text = command[len("rethink ") :].strip()
letta_agent.messages[x].update({"content": text})
break
elif command.lower() == "rewrite" or command.lower().startswith("rewrite "):
# TODO this needs to also modify the persistence manager
if len(command) < len("rewrite "):
logger.warning("Missing text after the command")
else:
for x in range(len(letta_agent.messages) - 1, 0, -1):
if letta_agent.messages[x].get("role") == "assistant":
text = command[len("rewrite ") :].strip()
args = json_loads(letta_agent.messages[x].get("function_call").get("arguments"))
args["message"] = text
letta_agent.messages[x].get("function_call").update({"arguments": json_dumps(args)})
break
# No skip options
elif command.lower() == "wipe":
# exit not supported on server.py
raise ValueError(command)
elif command.lower() == "heartbeat":
input_message = system.get_heartbeat()
usage = self._step(actor=actor, agent_id=agent_id, input_message=input_message)
elif command.lower() == "memorywarning":
input_message = system.get_token_limit_warning()
usage = self._step(actor=actor, agent_id=agent_id, input_message=input_message)
if not usage:
usage = LettaUsageStatistics()
return usage
def user_message(
self,
user_id: str,
agent_id: str,
message: Union[str, Message],
timestamp: Optional[datetime] = None,
) -> LettaUsageStatistics:
"""Process an incoming user message and feed it through the Letta agent"""
try:
actor = self.user_manager.get_user_by_id(user_id=user_id)
except NoResultFound:
raise ValueError(f"User user_id={user_id} does not exist")
try:
agent = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
except NoResultFound:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Basic input sanitization
if isinstance(message, str):
if len(message) == 0:
raise ValueError(f"Invalid input: '{message}'")
# If the input begins with a command prefix, reject
elif message.startswith("/"):
raise ValueError(f"Invalid input: '{message}'")
packaged_user_message = system.package_user_message(
user_message=message,
time=timestamp.isoformat() if timestamp else None,
)
# NOTE: eventually deprecate and only allow passing Message types
message = MessageCreate(
agent_id=agent_id,
role="user",
content=[TextContent(text=packaged_user_message)],
)
# Run the agent state forward
usage = self._step(actor=actor, agent_id=agent_id, input_messages=[message])
return usage
def system_message(
self,
user_id: str,
agent_id: str,
message: Union[str, Message],
timestamp: Optional[datetime] = None,
) -> LettaUsageStatistics:
"""Process an incoming system message and feed it through the Letta agent"""
try:
actor = self.user_manager.get_user_by_id(user_id=user_id)
except NoResultFound:
raise ValueError(f"User user_id={user_id} does not exist")
try:
agent = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
except NoResultFound:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Basic input sanitization
if isinstance(message, str):
if len(message) == 0:
raise ValueError(f"Invalid input: '{message}'")
# If the input begins with a command prefix, reject
elif message.startswith("/"):
raise ValueError(f"Invalid input: '{message}'")
packaged_system_message = system.package_system_message(system_message=message)
# NOTE: eventually deprecate and only allow passing Message types
# Convert to a Message object
if timestamp:
message = Message(
agent_id=agent_id,
role="system",
content=[TextContent(text=packaged_system_message)],
created_at=timestamp,
)
else:
message = Message(
agent_id=agent_id,
role="system",
content=[TextContent(text=packaged_system_message)],
)
if isinstance(message, Message):
# Can't have a null text field
message_text = message.content[0].text
if message_text is None or len(message_text) == 0:
raise ValueError(f"Invalid input: '{message_text}'")
# If the input begins with a command prefix, reject
elif message_text.startswith("/"):
raise ValueError(f"Invalid input: '{message_text}'")
else:
raise TypeError(f"Invalid input: '{message}' - type {type(message)}")
if timestamp:
# Override the timestamp with what the caller provided
message.created_at = timestamp
# Run the agent state forward
return self._step(actor=actor, agent_id=agent_id, input_messages=message)
def send_messages(
self,
actor: User,
agent_id: str,
input_messages: List[MessageCreate],
wrap_user_message: bool = True,
wrap_system_message: bool = True,
interface: Union[AgentInterface, ChatCompletionsStreamingInterface, None] = None, # needed for responses
metadata: Optional[dict] = None, # Pass through metadata to interface
put_inner_thoughts_first: bool = True,
) -> LettaUsageStatistics:
"""Send a list of messages to the agent."""
# Store metadata in interface if provided
if metadata and hasattr(interface, "metadata"):
interface.metadata = metadata
# Run the agent state forward
return self._step(
actor=actor,
agent_id=agent_id,
input_messages=input_messages,
interface=interface,
put_inner_thoughts_first=put_inner_thoughts_first,
)
# @LockingServer.agent_lock_decorator
def run_command(self, user_id: str, agent_id: str, command: str) -> LettaUsageStatistics:
"""Run a command on the agent"""
# If the input begins with a command prefix, attempt to process it as a command
if command.startswith("/"):
if len(command) > 1:
command = command[1:] # strip the prefix
return self._command(user_id=user_id, agent_id=agent_id, command=command)
@trace_method
def get_cached_llm_config(self, actor: User, **kwargs):
key = make_key(**kwargs)
if key not in self._llm_config_cache:
self._llm_config_cache[key] = self.get_llm_config_from_handle(actor=actor, **kwargs)
return self._llm_config_cache[key]
@trace_method
def get_cached_embedding_config(self, actor: User, **kwargs):
key = make_key(**kwargs)
if key not in self._embedding_config_cache:
self._embedding_config_cache[key] = self.get_embedding_config_from_handle(actor=actor, **kwargs)
return self._embedding_config_cache[key]
@trace_method
def create_agent(
self,
request: CreateAgent,
actor: User,
# interface
interface: Union[AgentInterface, None] = None,
) -> AgentState:
if request.llm_config is None:
if request.model is None:
raise ValueError("Must specify either model or llm_config in request")
config_params = {
"handle": request.model,
"context_window_limit": request.context_window_limit,
"max_tokens": request.max_tokens,
"max_reasoning_tokens": request.max_reasoning_tokens,
"enable_reasoner": request.enable_reasoner,
}
log_event(name="start get_cached_llm_config", attributes=config_params)
request.llm_config = self.get_cached_llm_config(actor=actor, **config_params)
log_event(name="end get_cached_llm_config", attributes=config_params)
if request.embedding_config is None:
if request.embedding is None:
raise ValueError("Must specify either embedding or embedding_config in request")
embedding_config_params = {
"handle": request.embedding,
"embedding_chunk_size": request.embedding_chunk_size or constants.DEFAULT_EMBEDDING_CHUNK_SIZE,
}
log_event(name="start get_cached_embedding_config", attributes=embedding_config_params)
request.embedding_config = self.get_cached_embedding_config(actor=actor, **embedding_config_params)
log_event(name="end get_cached_embedding_config", attributes=embedding_config_params)
log_event(name="start create_agent db")
main_agent = self.agent_manager.create_agent(
agent_create=request,
actor=actor,
)
log_event(name="end create_agent db")
if request.enable_sleeptime:
if request.agent_type == AgentType.voice_convo_agent:
main_agent = self.create_voice_sleeptime_agent(main_agent=main_agent, actor=actor)
else:
main_agent = self.create_sleeptime_agent(main_agent=main_agent, actor=actor)
return main_agent
@trace_method
async def create_agent_async(
self,
request: CreateAgent,
actor: User,
# interface
interface: Union[AgentInterface, None] = None,
) -> AgentState:
if request.llm_config is None:
if request.model is None:
raise ValueError("Must specify either model or llm_config in request")
config_params = {
"handle": request.model,
"context_window_limit": request.context_window_limit,
"max_tokens": request.max_tokens,
"max_reasoning_tokens": request.max_reasoning_tokens,
"enable_reasoner": request.enable_reasoner,
}
log_event(name="start get_cached_llm_config", attributes=config_params)
request.llm_config = self.get_cached_llm_config(actor=actor, **config_params)
log_event(name="end get_cached_llm_config", attributes=config_params)
if request.embedding_config is None:
if request.embedding is None:
raise ValueError("Must specify either embedding or embedding_config in request")
embedding_config_params = {
"handle": request.embedding,
"embedding_chunk_size": request.embedding_chunk_size or constants.DEFAULT_EMBEDDING_CHUNK_SIZE,
}
log_event(name="start get_cached_embedding_config", attributes=embedding_config_params)
request.embedding_config = self.get_cached_embedding_config(actor=actor, **embedding_config_params)
log_event(name="end get_cached_embedding_config", attributes=embedding_config_params)
log_event(name="start create_agent db")
main_agent = await self.agent_manager.create_agent_async(
agent_create=request,
actor=actor,
)
log_event(name="end create_agent db")
if request.enable_sleeptime:
if request.agent_type == AgentType.voice_convo_agent:
main_agent = self.create_voice_sleeptime_agent(main_agent=main_agent, actor=actor)
else:
main_agent = self.create_sleeptime_agent(main_agent=main_agent, actor=actor)
return main_agent
def update_agent(
self,
agent_id: str,
request: UpdateAgent,
actor: User,
) -> AgentState:
if request.model is not None:
request.llm_config = self.get_llm_config_from_handle(handle=request.model, actor=actor)
if request.embedding is not None:
request.embedding_config = self.get_embedding_config_from_handle(handle=request.embedding, actor=actor)
if request.enable_sleeptime:
agent = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
if agent.multi_agent_group is None:
if agent.agent_type == AgentType.voice_convo_agent:
self.create_voice_sleeptime_agent(main_agent=agent, actor=actor)
else:
self.create_sleeptime_agent(main_agent=agent, actor=actor)
return self.agent_manager.update_agent(
agent_id=agent_id,
agent_update=request,
actor=actor,
)
async def update_agent_async(
self,
agent_id: str,
request: UpdateAgent,
actor: User,
) -> AgentState:
if request.model is not None:
request.llm_config = self.get_llm_config_from_handle(handle=request.model, actor=actor)
if request.embedding is not None:
request.embedding_config = self.get_embedding_config_from_handle(handle=request.embedding, actor=actor)
if request.enable_sleeptime:
agent = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
if agent.multi_agent_group is None:
if agent.agent_type == AgentType.voice_convo_agent:
self.create_voice_sleeptime_agent(main_agent=agent, actor=actor)
else:
self.create_sleeptime_agent(main_agent=agent, actor=actor)
return await self.agent_manager.update_agent_async(
agent_id=agent_id,
agent_update=request,
actor=actor,
)
def create_sleeptime_agent(self, main_agent: AgentState, actor: User) -> AgentState:
request = CreateAgent(
name=main_agent.name + "-sleeptime",
agent_type=AgentType.sleeptime_agent,
block_ids=[block.id for block in main_agent.memory.blocks],
memory_blocks=[
CreateBlock(
label="memory_persona",
value=get_persona_text("sleeptime_memory_persona"),
),
],
llm_config=main_agent.llm_config,
embedding_config=main_agent.embedding_config,
project_id=main_agent.project_id,
)
sleeptime_agent = self.agent_manager.create_agent(
agent_create=request,
actor=actor,
)
self.group_manager.create_group(
group=GroupCreate(
description="",
agent_ids=[sleeptime_agent.id],
manager_config=SleeptimeManager(
manager_agent_id=main_agent.id,
sleeptime_agent_frequency=5,
),
),
actor=actor,
)
return self.agent_manager.get_agent_by_id(agent_id=main_agent.id, actor=actor)
def create_voice_sleeptime_agent(self, main_agent: AgentState, actor: User) -> AgentState:
# TODO: Inject system
request = CreateAgent(
name=main_agent.name + "-sleeptime",
agent_type=AgentType.voice_sleeptime_agent,
block_ids=[block.id for block in main_agent.memory.blocks],
memory_blocks=[
CreateBlock(
label="memory_persona",
value=get_persona_text("voice_memory_persona"),
),
],
llm_config=LLMConfig.default_config("gpt-4.1"),
embedding_config=main_agent.embedding_config,
project_id=main_agent.project_id,
)
voice_sleeptime_agent = self.agent_manager.create_agent(
agent_create=request,
actor=actor,
)
self.group_manager.create_group(
group=GroupCreate(
description="Low latency voice chat with async memory management.",
agent_ids=[voice_sleeptime_agent.id],
manager_config=VoiceSleeptimeManager(
manager_agent_id=main_agent.id,
max_message_buffer_length=constants.DEFAULT_MAX_MESSAGE_BUFFER_LENGTH,
min_message_buffer_length=constants.DEFAULT_MIN_MESSAGE_BUFFER_LENGTH,
),
),
actor=actor,
)
return self.agent_manager.get_agent_by_id(agent_id=main_agent.id, actor=actor)
# convert name->id
# TODO: These can be moved to agent_manager
def get_agent_memory(self, agent_id: str, actor: User) -> Memory:
"""Return the memory of an agent (core memory)"""
return self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor).memory
async def get_agent_memory_async(self, agent_id: str, actor: User) -> Memory:
"""Return the memory of an agent (core memory)"""
agent = await self.agent_manager.get_agent_by_id_async(agent_id=agent_id, actor=actor)
return agent.memory
def get_archival_memory_summary(self, agent_id: str, actor: User) -> ArchivalMemorySummary:
return ArchivalMemorySummary(size=self.agent_manager.passage_size(actor=actor, agent_id=agent_id))
def get_recall_memory_summary(self, agent_id: str, actor: User) -> RecallMemorySummary:
return RecallMemorySummary(size=self.message_manager.size(actor=actor, agent_id=agent_id))
def get_agent_archival(
self,
user_id: str,
agent_id: str,
after: Optional[str] = None,
before: Optional[str] = None,
limit: Optional[int] = 100,
order_by: Optional[str] = "created_at",
reverse: Optional[bool] = False,
query_text: Optional[str] = None,
ascending: Optional[bool] = True,
) -> List[Passage]:
# TODO: Thread actor directly through this function, since the top level caller most likely already retrieved the user
actor = self.user_manager.get_user_or_default(user_id=user_id)
# iterate over records
records = self.agent_manager.list_passages(
actor=actor,
agent_id=agent_id,
after=after,
query_text=query_text,
before=before,
ascending=ascending,
limit=limit,
)
return records
async def get_agent_archival_async(
self,
agent_id: str,
actor: User,
after: Optional[str] = None,
before: Optional[str] = None,
limit: Optional[int] = 100,
order_by: Optional[str] = "created_at",
reverse: Optional[bool] = False,
query_text: Optional[str] = None,
ascending: Optional[bool] = True,
) -> List[Passage]:
# iterate over records
records = await self.agent_manager.list_passages_async(
actor=actor,
agent_id=agent_id,
after=after,
query_text=query_text,
before=before,
ascending=ascending,
limit=limit,
)
return records
def insert_archival_memory(self, agent_id: str, memory_contents: str, actor: User) -> List[Passage]:
# Get the agent object (loaded in memory)
agent_state = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
# Insert into archival memory
# TODO: @mindy look at moving this to agent_manager to avoid above extra call
passages = self.passage_manager.insert_passage(agent_state=agent_state, agent_id=agent_id, text=memory_contents, actor=actor)
# rebuild agent system prompt - force since no archival change
self.agent_manager.rebuild_system_prompt(agent_id=agent_id, actor=actor, force=True)
return passages
def modify_archival_memory(self, agent_id: str, memory_id: str, passage: PassageUpdate, actor: User) -> List[Passage]:
passage = Passage(**passage.model_dump(exclude_unset=True, exclude_none=True))
passages = self.passage_manager.update_passage_by_id(passage_id=memory_id, passage=passage, actor=actor)
return passages
def delete_archival_memory(self, memory_id: str, actor: User):
# TODO check if it exists first, and throw error if not
# TODO: need to also rebuild the prompt here
passage = self.passage_manager.get_passage_by_id(passage_id=memory_id, actor=actor)
# delete the passage
self.passage_manager.delete_passage_by_id(passage_id=memory_id, actor=actor)
# rebuild system prompt and force
self.agent_manager.rebuild_system_prompt(agent_id=passage.agent_id, actor=actor, force=True)
def get_agent_recall(
self,
user_id: str,
agent_id: str,
after: Optional[str] = None,
before: Optional[str] = None,
limit: Optional[int] = 100,
group_id: Optional[str] = None,
reverse: Optional[bool] = False,
return_message_object: bool = True,
use_assistant_message: bool = True,
assistant_message_tool_name: str = constants.DEFAULT_MESSAGE_TOOL,
assistant_message_tool_kwarg: str = constants.DEFAULT_MESSAGE_TOOL_KWARG,
) -> Union[List[Message], List[LettaMessage]]:
# TODO: Thread actor directly through this function, since the top level caller most likely already retrieved the user
actor = self.user_manager.get_user_or_default(user_id=user_id)
records = self.message_manager.list_messages_for_agent(
agent_id=agent_id,
actor=actor,
after=after,
before=before,
limit=limit,
ascending=not reverse,
group_id=group_id,
)
if not return_message_object:
records = Message.to_letta_messages_from_list(
messages=records,
use_assistant_message=use_assistant_message,
assistant_message_tool_name=assistant_message_tool_name,
assistant_message_tool_kwarg=assistant_message_tool_kwarg,
reverse=reverse,
)
if reverse:
records = records[::-1]
return records
async def get_agent_recall_async(
self,
agent_id: str,
actor: User,
after: Optional[str] = None,
before: Optional[str] = None,
limit: Optional[int] = 100,
group_id: Optional[str] = None,
reverse: Optional[bool] = False,
return_message_object: bool = True,
use_assistant_message: bool = True,
assistant_message_tool_name: str = constants.DEFAULT_MESSAGE_TOOL,
assistant_message_tool_kwarg: str = constants.DEFAULT_MESSAGE_TOOL_KWARG,
) -> Union[List[Message], List[LettaMessage]]:
records = await self.message_manager.list_messages_for_agent_async(
agent_id=agent_id,
actor=actor,
after=after,
before=before,
limit=limit,
ascending=not reverse,
group_id=group_id,
)
if not return_message_object:
records = Message.to_letta_messages_from_list(
messages=records,
use_assistant_message=use_assistant_message,
assistant_message_tool_name=assistant_message_tool_name,
assistant_message_tool_kwarg=assistant_message_tool_kwarg,
reverse=reverse,
)
if reverse:
records = records[::-1]
return records
def get_server_config(self, include_defaults: bool = False) -> dict:
"""Return the base config"""
def clean_keys(config):
config_copy = config.copy()
for k, v in config.items():
if k == "key" or "_key" in k:
config_copy[k] = server_utils.shorten_key_middle(v, chars_each_side=5)
return config_copy
# TODO: do we need a separate server config?
base_config = vars(self.config)
clean_base_config = clean_keys(base_config)
response = {"config": clean_base_config}
if include_defaults:
default_config = vars(LettaConfig())
clean_default_config = clean_keys(default_config)
response["defaults"] = clean_default_config
return response
def update_agent_core_memory(self, agent_id: str, label: str, value: str, actor: User) -> Memory:
"""Update the value of a block in the agent's memory"""
# get the block id
block = self.agent_manager.get_block_with_label(agent_id=agent_id, block_label=label, actor=actor)
# update the block
self.block_manager.update_block(block_id=block.id, block_update=BlockUpdate(value=value), actor=actor)
# rebuild system prompt for agent, potentially changed
return self.agent_manager.rebuild_system_prompt(agent_id=agent_id, actor=actor).memory
async def delete_source(self, source_id: str, actor: User):
"""Delete a data source"""
await self.source_manager.delete_source(source_id=source_id, actor=actor)
# delete data from passage store
# TODO: make async
passages_to_be_deleted = self.agent_manager.list_passages(actor=actor, source_id=source_id, limit=None)
# TODO: make this async
self.passage_manager.delete_passages(actor=actor, passages=passages_to_be_deleted)
# TODO: delete data from agent passage stores (?)
async def load_file_to_source(self, source_id: str, file_path: str, job_id: str, actor: User) -> Job:
# update job
job = self.job_manager.get_job_by_id(job_id, actor=actor)
job.status = JobStatus.running
self.job_manager.update_job_by_id(job_id=job_id, job_update=JobUpdate(**job.model_dump()), actor=actor)
# try:
from letta.data_sources.connectors import DirectoryConnector
# TODO: move this into a thread
source = await self.source_manager.get_source_by_id(source_id=source_id)
if source is None:
raise ValueError(f"Source {source_id} does not exist")
connector = DirectoryConnector(input_files=[file_path])
num_passages, num_documents = await self.load_data(user_id=source.created_by_id, source_name=source.name, connector=connector)
# update all agents who have this source attached
agent_states = await self.source_manager.list_attached_agents(source_id=source_id, actor=actor)
for agent_state in agent_states:
agent_id = agent_state.id
# Attach source to agent
curr_passage_size = await self.agent_manager.passage_size_async(actor=actor, agent_id=agent_id)
agent_state = self.agent_manager.attach_source(agent_id=agent_state.id, source_id=source_id, actor=actor)
new_passage_size = await self.agent_manager.passage_size_async(actor=actor, agent_id=agent_id)
assert new_passage_size >= curr_passage_size # in case empty files are added
# rebuild system prompt and force
agent_state = self.agent_manager.rebuild_system_prompt(agent_id=agent_id, actor=actor, force=True)
# update job status
job.status = JobStatus.completed
job.metadata["num_passages"] = num_passages
job.metadata["num_documents"] = num_documents
self.job_manager.update_job_by_id(job_id=job_id, job_update=JobUpdate(**job.model_dump()), actor=actor)
return job
def sleeptime_document_ingest(self, main_agent: AgentState, source: Source, actor: User, clear_history: bool = False) -> None:
sleeptime_agent = self.create_document_sleeptime_agent(main_agent, source, actor, clear_history)
agent = self.load_agent(agent_id=sleeptime_agent.id, actor=actor)
for passage in self.list_data_source_passages(source_id=source.id, user_id=actor.id):
agent.step(
input_messages=[
MessageCreate(role="user", content=passage.text),
]
)
self.agent_manager.delete_agent(agent_id=sleeptime_agent.id, actor=actor)
def create_document_sleeptime_agent(
self, main_agent: AgentState, source: Source, actor: User, clear_history: bool = False
) -> AgentState:
try:
block = self.agent_manager.get_block_with_label(agent_id=main_agent.id, block_label=source.name, actor=actor)
except:
block = self.block_manager.create_or_update_block(Block(label=source.name, value=""), actor=actor)
self.agent_manager.attach_block(agent_id=main_agent.id, block_id=block.id, actor=actor)
if clear_history and block.value != "":
block = self.block_manager.update_block(block_id=block.id, block=BlockUpdate(value=""))
request = CreateAgent(
name=main_agent.name + "-doc-sleeptime",
system=get_system_text("sleeptime_doc_ingest"),
agent_type=AgentType.sleeptime_agent,
block_ids=[block.id],
memory_blocks=[
CreateBlock(
label="persona",
value=get_persona_text("sleeptime_doc_persona"),
),
CreateBlock(
label="instructions",
value=source.instructions,
),
],
llm_config=main_agent.llm_config,
embedding_config=main_agent.embedding_config,
project_id=main_agent.project_id,
include_base_tools=False,
tools=constants.BASE_SLEEPTIME_TOOLS,
)
return self.agent_manager.create_agent(
agent_create=request,
actor=actor,
)
async def load_data(
self,
user_id: str,
connector: DataConnector,
source_name: str,
) -> Tuple[int, int]:
"""Load data from a DataConnector into a source for a specified user_id"""
# TODO: this should be implemented as a batch job or at least async, since it may take a long time
# load data from a data source into the document store
user = self.user_manager.get_user_by_id(user_id=user_id)
source = await self.source_manager.get_source_by_name(source_name=source_name, actor=user)
if source is None:
raise ValueError(f"Data source {source_name} does not exist for user {user_id}")
# load data into the document store
passage_count, document_count = await load_data(connector, source, self.passage_manager, self.source_manager, actor=user)
return passage_count, document_count
def list_data_source_passages(self, user_id: str, source_id: str) -> List[Passage]:
# TODO: move this query into PassageManager
return self.agent_manager.list_passages(actor=self.user_manager.get_user_or_default(user_id=user_id), source_id=source_id)
def list_all_sources(self, actor: User) -> List[Source]:
# TODO: legacy: remove
"""List all sources (w/ extra metadata) belonging to a user"""
sources = self.source_manager.list_sources(actor=actor)
# Add extra metadata to the sources
sources_with_metadata = []
for source in sources:
# count number of passages
num_passages = self.agent_manager.passage_size(actor=actor, source_id=source.id)
# TODO: add when files table implemented
## count number of files
# document_conn = StorageConnector.get_storage_connector(TableType.FILES, self.config, user_id=user_id)
# num_documents = document_conn.size({"data_source": source.name})
num_documents = 0
agents = self.source_manager.list_attached_agents(source_id=source.id, actor=actor)
# add the agent name information
attached_agents = [{"id": agent.id, "name": agent.name} for agent in agents]
# Overwrite metadata field, should be empty anyways
source.metadata = dict(
num_documents=num_documents,
num_passages=num_passages,
attached_agents=attached_agents,
)
sources_with_metadata.append(source)
return sources_with_metadata
def update_agent_message(self, message_id: str, request: MessageUpdate, actor: User) -> Message:
"""Update the details of a message associated with an agent"""
# Get the current message
return self.message_manager.update_message_by_id(message_id=message_id, message_update=request, actor=actor)
def get_organization_or_default(self, org_id: Optional[str]) -> Organization:
"""Get the organization object for org_id if it exists, otherwise return the default organization object"""
if org_id is None:
org_id = self.organization_manager.DEFAULT_ORG_ID
try:
return self.organization_manager.get_organization_by_id(org_id=org_id)
except NoResultFound:
raise HTTPException(status_code=404, detail=f"Organization with id {org_id} not found")
def list_llm_models(
self,
actor: User,
provider_category: Optional[List[ProviderCategory]] = None,
provider_name: Optional[str] = None,
provider_type: Optional[ProviderType] = None,
) -> List[LLMConfig]:
"""List available models"""
llm_models = []
for provider in self.get_enabled_providers(
provider_category=provider_category,
provider_name=provider_name,
provider_type=provider_type,
actor=actor,
):
try:
llm_models.extend(provider.list_llm_models())
except Exception as e:
import traceback
traceback.print_exc()
warnings.warn(f"An error occurred while listing LLM models for provider {provider}: {e}")
llm_models.extend(self.get_local_llm_configs())
return llm_models
@trace_method
async def list_llm_models_async(
self,
actor: User,
provider_category: Optional[List[ProviderCategory]] = None,
provider_name: Optional[str] = None,
provider_type: Optional[ProviderType] = None,
) -> List[LLMConfig]:
"""Asynchronously list available models with maximum concurrency"""
import asyncio
providers = await self.get_enabled_providers_async(
provider_category=provider_category,
provider_name=provider_name,
provider_type=provider_type,
actor=actor,
)
async def get_provider_models(provider):
try:
return await provider.list_llm_models_async()
except Exception as e:
import traceback
traceback.print_exc()
warnings.warn(f"An error occurred while listing LLM models for provider {provider}: {e}")
return []
# Execute all provider model listing tasks concurrently
provider_results = await asyncio.gather(*[get_provider_models(provider) for provider in providers])
# Flatten the results
llm_models = []
for models in provider_results:
llm_models.extend(models)
# Get local configs - if this is potentially slow, consider making it async too
local_configs = self.get_local_llm_configs()
llm_models.extend(local_configs)
return llm_models
def list_embedding_models(self, actor: User) -> List[EmbeddingConfig]:
"""List available embedding models"""
embedding_models = []
for provider in self.get_enabled_providers(actor):
try:
embedding_models.extend(provider.list_embedding_models())
except Exception as e:
warnings.warn(f"An error occurred while listing embedding models for provider {provider}: {e}")
return embedding_models
async def list_embedding_models_async(self, actor: User) -> List[EmbeddingConfig]:
"""Asynchronously list available embedding models with maximum concurrency"""
import asyncio
# Get all eligible providers first
providers = await self.get_enabled_providers_async(actor=actor)
# Fetch embedding models from each provider concurrently
async def get_provider_embedding_models(provider):
try:
# All providers now have list_embedding_models_async
return await provider.list_embedding_models_async()
except Exception as e:
import traceback
traceback.print_exc()
warnings.warn(f"An error occurred while listing embedding models for provider {provider}: {e}")
return []
# Execute all provider model listing tasks concurrently
provider_results = await asyncio.gather(*[get_provider_embedding_models(provider) for provider in providers])
# Flatten the results
embedding_models = []
for models in provider_results:
embedding_models.extend(models)
return embedding_models
def get_enabled_providers(
self,
actor: User,
provider_category: Optional[List[ProviderCategory]] = None,
provider_name: Optional[str] = None,
provider_type: Optional[ProviderType] = None,
) -> List[Provider]:
providers = []
if not provider_category or ProviderCategory.base in provider_category:
providers_from_env = [p for p in self._enabled_providers]
providers.extend(providers_from_env)
if not provider_category or ProviderCategory.byok in provider_category:
providers_from_db = self.provider_manager.list_providers(
name=provider_name,
provider_type=provider_type,
actor=actor,
)
providers_from_db = [p.cast_to_subtype() for p in providers_from_db]
providers.extend(providers_from_db)
if provider_name is not None:
providers = [p for p in providers if p.name == provider_name]
if provider_type is not None:
providers = [p for p in providers if p.provider_type == provider_type]
return providers
async def get_enabled_providers_async(
self,
actor: User,
provider_category: Optional[List[ProviderCategory]] = None,
provider_name: Optional[str] = None,
provider_type: Optional[ProviderType] = None,
) -> List[Provider]:
providers = []
if not provider_category or ProviderCategory.base in provider_category:
providers_from_env = [p for p in self._enabled_providers]
providers.extend(providers_from_env)
if not provider_category or ProviderCategory.byok in provider_category:
providers_from_db = await self.provider_manager.list_providers_async(
name=provider_name,
provider_type=provider_type,
actor=actor,
)
providers_from_db = [p.cast_to_subtype() for p in providers_from_db]
providers.extend(providers_from_db)
if provider_name is not None:
providers = [p for p in providers if p.name == provider_name]
if provider_type is not None:
providers = [p for p in providers if p.provider_type == provider_type]
return providers
@trace_method
def get_llm_config_from_handle(
self,
actor: User,
handle: str,
context_window_limit: Optional[int] = None,
max_tokens: Optional[int] = None,
max_reasoning_tokens: Optional[int] = None,
enable_reasoner: Optional[bool] = None,
) -> LLMConfig:
try:
provider_name, model_name = handle.split("/", 1)
provider = self.get_provider_from_name(provider_name, actor)
llm_configs = [config for config in provider.list_llm_models() if config.handle == handle]
if not llm_configs:
llm_configs = [config for config in provider.list_llm_models() if config.model == model_name]
if not llm_configs:
available_handles = [config.handle for config in provider.list_llm_models()]
raise HandleNotFoundError(handle, available_handles)
except ValueError as e:
llm_configs = [config for config in self.get_local_llm_configs() if config.handle == handle]
if not llm_configs:
llm_configs = [config for config in self.get_local_llm_configs() if config.model == model_name]
if not llm_configs:
raise e
if len(llm_configs) == 1:
llm_config = llm_configs[0]
elif len(llm_configs) > 1:
raise ValueError(f"Multiple LLM models with name {model_name} supported by {provider_name}")
else:
llm_config = llm_configs[0]
if context_window_limit is not None:
if context_window_limit > llm_config.context_window:
raise ValueError(f"Context window limit ({context_window_limit}) is greater than maximum of ({llm_config.context_window})")
llm_config.context_window = context_window_limit
else:
llm_config.context_window = min(llm_config.context_window, model_settings.global_max_context_window_limit)
if max_tokens is not None:
llm_config.max_tokens = max_tokens
if max_reasoning_tokens is not None:
if not max_tokens or max_reasoning_tokens > max_tokens:
raise ValueError(f"Max reasoning tokens ({max_reasoning_tokens}) must be less than max tokens ({max_tokens})")
llm_config.max_reasoning_tokens = max_reasoning_tokens
if enable_reasoner is not None:
llm_config.enable_reasoner = enable_reasoner
if enable_reasoner and llm_config.model_endpoint_type == "anthropic":
llm_config.put_inner_thoughts_in_kwargs = False
return llm_config
@trace_method
def get_embedding_config_from_handle(
self, actor: User, handle: str, embedding_chunk_size: int = constants.DEFAULT_EMBEDDING_CHUNK_SIZE
) -> EmbeddingConfig:
try:
provider_name, model_name = handle.split("/", 1)
provider = self.get_provider_from_name(provider_name, actor)
embedding_configs = [config for config in provider.list_embedding_models() if config.handle == handle]
if not embedding_configs:
raise ValueError(f"Embedding model {model_name} is not supported by {provider_name}")
except ValueError as e:
# search local configs
embedding_configs = [config for config in self.get_local_embedding_configs() if config.handle == handle]
if not embedding_configs:
raise e
if len(embedding_configs) == 1:
embedding_config = embedding_configs[0]
elif len(embedding_configs) > 1:
raise ValueError(f"Multiple embedding models with name {model_name} supported by {provider_name}")
else:
embedding_config = embedding_configs[0]
if embedding_chunk_size:
embedding_config.embedding_chunk_size = embedding_chunk_size
return embedding_config
def get_provider_from_name(self, provider_name: str, actor: User) -> Provider:
providers = [provider for provider in self.get_enabled_providers(actor) if provider.name == provider_name]
if not providers:
raise ValueError(f"Provider {provider_name} is not supported")
elif len(providers) > 1:
raise ValueError(f"Multiple providers with name {provider_name} supported")
else:
provider = providers[0]
return provider
def get_local_llm_configs(self):
llm_models = []
try:
llm_configs_dir = os.path.expanduser("~/.letta/llm_configs")
if os.path.exists(llm_configs_dir):
for filename in os.listdir(llm_configs_dir):
if filename.endswith(".json"):
filepath = os.path.join(llm_configs_dir, filename)
try:
with open(filepath, "r") as f:
config_data = json.load(f)
llm_config = LLMConfig(**config_data)
llm_models.append(llm_config)
except (json.JSONDecodeError, ValueError) as e:
warnings.warn(f"Error parsing LLM config file {filename}: {e}")
except Exception as e:
warnings.warn(f"Error reading LLM configs directory: {e}")
return llm_models
def get_local_embedding_configs(self):
embedding_models = []
try:
embedding_configs_dir = os.path.expanduser("~/.letta/embedding_configs")
if os.path.exists(embedding_configs_dir):
for filename in os.listdir(embedding_configs_dir):
if filename.endswith(".json"):
filepath = os.path.join(embedding_configs_dir, filename)
try:
with open(filepath, "r") as f:
config_data = json.load(f)
embedding_config = EmbeddingConfig(**config_data)
embedding_models.append(embedding_config)
except (json.JSONDecodeError, ValueError) as e:
warnings.warn(f"Error parsing embedding config file {filename}: {e}")
except Exception as e:
warnings.warn(f"Error reading embedding configs directory: {e}")
return embedding_models
def add_llm_model(self, request: LLMConfig) -> LLMConfig:
"""Add a new LLM model"""
def add_embedding_model(self, request: EmbeddingConfig) -> EmbeddingConfig:
"""Add a new embedding model"""
def run_tool_from_source(
self,
actor: User,
tool_args: Dict[str, str],
tool_source: str,
tool_env_vars: Optional[Dict[str, str]] = None,
tool_source_type: Optional[str] = None,
tool_name: Optional[str] = None,
tool_args_json_schema: Optional[Dict[str, Any]] = None,
tool_json_schema: Optional[Dict[str, Any]] = None,
) -> ToolReturnMessage:
"""Run a tool from source code"""
if tool_source_type is not None and tool_source_type != "python":
raise ValueError("Only Python source code is supported at this time")
# If tools_json_schema is explicitly passed in, override it on the created Tool object
if tool_json_schema:
tool = Tool(name=tool_name, source_code=tool_source, json_schema=tool_json_schema)
else:
# NOTE: we're creating a floating Tool object and NOT persisting to DB
tool = Tool(
name=tool_name,
source_code=tool_source,
args_json_schema=tool_args_json_schema,
)
assert tool.name is not None, "Failed to create tool object"
# TODO eventually allow using agent state in tools
agent_state = None
# Next, attempt to run the tool with the sandbox
try:
tool_execution_result = ToolExecutionSandbox(tool.name, tool_args, actor, tool_object=tool).run(
agent_state=agent_state, additional_env_vars=tool_env_vars
)
return ToolReturnMessage(
id="null",
tool_call_id="null",
date=get_utc_time(),
status=tool_execution_result.status,
tool_return=str(tool_execution_result.func_return),
stdout=tool_execution_result.stdout,
stderr=tool_execution_result.stderr,
)
except Exception as e:
func_return = get_friendly_error_msg(function_name=tool.name, exception_name=type(e).__name__, exception_message=str(e))
return ToolReturnMessage(
id="null",
tool_call_id="null",
date=get_utc_time(),
status="error",
tool_return=func_return,
stdout=[],
stderr=[traceback.format_exc()],
)
# Composio wrappers
def get_composio_client(self, api_key: Optional[str] = None):
if api_key:
return Composio(api_key=api_key)
elif tool_settings.composio_api_key:
return Composio(api_key=tool_settings.composio_api_key)
else:
return Composio()
def get_composio_apps(self, api_key: Optional[str] = None) -> List["AppModel"]:
"""Get a list of all Composio apps with actions"""
apps = self.get_composio_client(api_key=api_key).apps.get()
apps_with_actions = []
for app in apps:
# A bit of hacky logic until composio patches this
if app.meta["actionsCount"] > 0 and not app.name.lower().endswith("_beta"):
apps_with_actions.append(app)
return apps_with_actions
def get_composio_actions_from_app_name(self, composio_app_name: str, api_key: Optional[str] = None) -> List["ActionModel"]:
actions = self.get_composio_client(api_key=api_key).actions.get(apps=[composio_app_name])
return actions
# MCP wrappers
# TODO support both command + SSE servers (via config)
def get_mcp_servers(self) -> dict[str, Union[SSEServerConfig, StdioServerConfig]]:
"""List the MCP servers in the config (doesn't test that they are actually working)"""
# TODO implement non-flatfile mechanism
if not tool_settings.mcp_read_from_config:
raise RuntimeError("MCP config file disabled. Enable it in settings.")
mcp_server_list = {}
# Attempt to read from ~/.letta/mcp_config.json
mcp_config_path = os.path.join(constants.LETTA_DIR, constants.MCP_CONFIG_NAME)
if os.path.exists(mcp_config_path):
with open(mcp_config_path, "r") as f:
try:
mcp_config = json.load(f)
except Exception as e:
logger.error(f"Failed to parse MCP config file ({mcp_config_path}) as json: {e}")
return mcp_server_list
# Proper formatting is "mcpServers" key at the top level,
# then a dict with the MCP server name as the key,
# with the value being the schema from StdioServerParameters
if MCP_CONFIG_TOPLEVEL_KEY in mcp_config:
for server_name, server_params_raw in mcp_config[MCP_CONFIG_TOPLEVEL_KEY].items():
# No support for duplicate server names
if server_name in mcp_server_list:
logger.error(f"Duplicate MCP server name found (skipping): {server_name}")
continue
if "url" in server_params_raw:
# Attempt to parse the server params as an SSE server
try:
server_params = SSEServerConfig(
server_name=server_name,
server_url=server_params_raw["url"],
)
mcp_server_list[server_name] = server_params
except Exception as e:
logger.error(f"Failed to parse server params for MCP server {server_name} (skipping): {e}")
continue
else:
# Attempt to parse the server params as a StdioServerParameters
try:
server_params = StdioServerConfig(
server_name=server_name,
command=server_params_raw["command"],
args=server_params_raw.get("args", []),
env=server_params_raw.get("env", {}),
)
mcp_server_list[server_name] = server_params
except Exception as e:
logger.error(f"Failed to parse server params for MCP server {server_name} (skipping): {e}")
continue
# If the file doesn't exist, return empty dictionary
return mcp_server_list
def get_tools_from_mcp_server(self, mcp_server_name: str) -> List[MCPTool]:
"""List the tools in an MCP server. Requires a client to be created."""
if mcp_server_name not in self.mcp_clients:
raise ValueError(f"No client was created for MCP server: {mcp_server_name}")
return self.mcp_clients[mcp_server_name].list_tools()
def add_mcp_server_to_config(
self, server_config: Union[SSEServerConfig, StdioServerConfig], allow_upsert: bool = True
) -> List[Union[SSEServerConfig, StdioServerConfig]]:
"""Add a new server config to the MCP config file"""
# TODO implement non-flatfile mechanism
if not tool_settings.mcp_read_from_config:
raise RuntimeError("MCP config file disabled. Enable it in settings.")
# If the config file doesn't exist, throw an error.
mcp_config_path = os.path.join(constants.LETTA_DIR, constants.MCP_CONFIG_NAME)
if not os.path.exists(mcp_config_path):
# Create the file if it doesn't exist
logger.debug(f"MCP config file not found, creating new file at: {mcp_config_path}")
# If the file does exist, attempt to parse it get calling get_mcp_servers
try:
current_mcp_servers = self.get_mcp_servers()
except Exception as e:
# Raise an error telling the user to fix the config file
logger.error(f"Failed to parse MCP config file at {mcp_config_path}: {e}")
raise ValueError(f"Failed to parse MCP config file {mcp_config_path}")
# Check if the server name is already in the config
if server_config.server_name in current_mcp_servers and not allow_upsert:
raise ValueError(f"Server name {server_config.server_name} is already in the config file")
# Attempt to initialize the connection to the server
if server_config.type == MCPServerType.SSE:
new_mcp_client = SSEMCPClient(server_config)
elif server_config.type == MCPServerType.STDIO:
new_mcp_client = StdioMCPClient(server_config)
else:
raise ValueError(f"Invalid MCP server config: {server_config}")
try:
new_mcp_client.connect_to_server()
except:
logger.exception(f"Failed to connect to MCP server: {server_config.server_name}")
raise RuntimeError(f"Failed to connect to MCP server: {server_config.server_name}")
# Print out the tools that are connected
logger.info(f"Attempting to fetch tools from MCP server: {server_config.server_name}")
new_mcp_tools = new_mcp_client.list_tools()
logger.info(f"MCP tools connected: {', '.join([t.name for t in new_mcp_tools])}")
logger.debug(f"MCP tools: {', '.join([str(t) for t in new_mcp_tools])}")
# Now that we've confirmed the config is working, let's add it to the client list
self.mcp_clients[server_config.server_name] = new_mcp_client
# Add to the server file
current_mcp_servers[server_config.server_name] = server_config
# Write out the file, and make sure to in include the top-level mcpConfig
try:
new_mcp_file = {MCP_CONFIG_TOPLEVEL_KEY: {k: v.to_dict() for k, v in current_mcp_servers.items()}}
with open(mcp_config_path, "w") as f:
json.dump(new_mcp_file, f, indent=4)
except Exception as e:
logger.error(f"Failed to write MCP config file at {mcp_config_path}: {e}")
raise ValueError(f"Failed to write MCP config file {mcp_config_path}")
return list(current_mcp_servers.values())
def delete_mcp_server_from_config(self, server_name: str) -> dict[str, Union[SSEServerConfig, StdioServerConfig]]:
"""Delete a server config from the MCP config file"""
# TODO implement non-flatfile mechanism
if not tool_settings.mcp_read_from_config:
raise RuntimeError("MCP config file disabled. Enable it in settings.")
# If the config file doesn't exist, throw an error.
mcp_config_path = os.path.join(constants.LETTA_DIR, constants.MCP_CONFIG_NAME)
if not os.path.exists(mcp_config_path):
# If the file doesn't exist, raise an error
raise FileNotFoundError(f"MCP config file not found: {mcp_config_path}")
# If the file does exist, attempt to parse it get calling get_mcp_servers
try:
current_mcp_servers = self.get_mcp_servers()
except Exception as e:
# Raise an error telling the user to fix the config file
logger.error(f"Failed to parse MCP config file at {mcp_config_path}: {e}")
raise ValueError(f"Failed to parse MCP config file {mcp_config_path}")
# Check if the server name is already in the config
# If it's not, throw an error
if server_name not in current_mcp_servers:
raise ValueError(f"Server name {server_name} not found in MCP config file")
# Remove from the server file
del current_mcp_servers[server_name]
# Write out the file, and make sure to in include the top-level mcpConfig
try:
new_mcp_file = {MCP_CONFIG_TOPLEVEL_KEY: {k: v.to_dict() for k, v in current_mcp_servers.items()}}
with open(mcp_config_path, "w") as f:
json.dump(new_mcp_file, f, indent=4)
except Exception as e:
logger.error(f"Failed to write MCP config file at {mcp_config_path}: {e}")
raise ValueError(f"Failed to write MCP config file {mcp_config_path}")
return list(current_mcp_servers.values())
@trace_method
async def send_message_to_agent(
self,
agent_id: str,
actor: User,
# role: MessageRole,
input_messages: List[MessageCreate],
stream_steps: bool,
stream_tokens: bool,
# related to whether or not we return `LettaMessage`s or `Message`s
chat_completion_mode: bool = False,
# Support for AssistantMessage
use_assistant_message: bool = True,
assistant_message_tool_name: str = constants.DEFAULT_MESSAGE_TOOL,
assistant_message_tool_kwarg: str = constants.DEFAULT_MESSAGE_TOOL_KWARG,
metadata: Optional[dict] = None,
request_start_timestamp_ns: Optional[int] = None,
) -> Union[StreamingResponse, LettaResponse]:
"""Split off into a separate function so that it can be imported in the /chat/completion proxy."""
# TODO: @charles is this the correct way to handle?
include_final_message = True
if not stream_steps and stream_tokens:
raise HTTPException(status_code=400, detail="stream_steps must be 'true' if stream_tokens is 'true'")
# For streaming response
try:
# TODO: move this logic into server.py
# Get the generator object off of the agent's streaming interface
# This will be attached to the POST SSE request used under-the-hood
letta_agent = self.load_agent(agent_id=agent_id, actor=actor)
# Disable token streaming if not OpenAI or Anthropic
# TODO: cleanup this logic
llm_config = letta_agent.agent_state.llm_config
# supports_token_streaming = ["openai", "anthropic", "xai", "deepseek"]
supports_token_streaming = ["openai", "anthropic", "deepseek"] # TODO re-enable xAI once streaming is patched
if stream_tokens and (
llm_config.model_endpoint_type not in supports_token_streaming
or llm_config.model_endpoint == constants.LETTA_MODEL_ENDPOINT
):
warnings.warn(
f"Token streaming is only supported for models with type {' or '.join(supports_token_streaming)} in the model_endpoint: agent has endpoint type {llm_config.model_endpoint_type} and {llm_config.model_endpoint}. Setting stream_tokens to False."
)
stream_tokens = False
# Create a new interface per request
letta_agent.interface = StreamingServerInterface(
# multi_step=True, # would we ever want to disable this?
use_assistant_message=use_assistant_message,
assistant_message_tool_name=assistant_message_tool_name,
assistant_message_tool_kwarg=assistant_message_tool_kwarg,
inner_thoughts_in_kwargs=(
llm_config.put_inner_thoughts_in_kwargs if llm_config.put_inner_thoughts_in_kwargs is not None else False
),
# inner_thoughts_kwarg=INNER_THOUGHTS_KWARG,
)
streaming_interface = letta_agent.interface
if not isinstance(streaming_interface, StreamingServerInterface):
raise ValueError(f"Agent has wrong type of interface: {type(streaming_interface)}")
# Enable token-streaming within the request if desired
streaming_interface.streaming_mode = stream_tokens
# "chatcompletion mode" does some remapping and ignores inner thoughts
streaming_interface.streaming_chat_completion_mode = chat_completion_mode
# streaming_interface.allow_assistant_message = stream
# streaming_interface.function_call_legacy_mode = stream
# Allow AssistantMessage is desired by client
# streaming_interface.use_assistant_message = use_assistant_message
# streaming_interface.assistant_message_tool_name = assistant_message_tool_name
# streaming_interface.assistant_message_tool_kwarg = assistant_message_tool_kwarg
# Related to JSON buffer reader
# streaming_interface.inner_thoughts_in_kwargs = (
# llm_config.put_inner_thoughts_in_kwargs if llm_config.put_inner_thoughts_in_kwargs is not None else False
# )
# Offload the synchronous message_func to a separate thread
streaming_interface.stream_start()
task = asyncio.create_task(
asyncio.to_thread(
self.send_messages,
actor=actor,
agent_id=agent_id,
input_messages=input_messages,
interface=streaming_interface,
metadata=metadata,
)
)
if stream_steps:
# return a stream
return StreamingResponse(
sse_async_generator(
streaming_interface.get_generator(),
usage_task=task,
finish_message=include_final_message,
request_start_timestamp_ns=request_start_timestamp_ns,
llm_config=llm_config,
),
media_type="text/event-stream",
)
else:
# buffer the stream, then return the list
generated_stream = []
async for message in streaming_interface.get_generator():
assert (
isinstance(message, LettaMessage)
or isinstance(message, LegacyLettaMessage)
or isinstance(message, MessageStreamStatus)
), type(message)
generated_stream.append(message)
if message == MessageStreamStatus.done:
break
# Get rid of the stream status messages
filtered_stream = [d for d in generated_stream if not isinstance(d, MessageStreamStatus)]
usage = await task
# By default the stream will be messages of type LettaMessage or LettaLegacyMessage
# If we want to convert these to Message, we can use the attached IDs
# NOTE: we will need to de-duplicate the Messsage IDs though (since Assistant->Inner+Func_Call)
# TODO: eventually update the interface to use `Message` and `MessageChunk` (new) inside the deque instead
return LettaResponse(messages=filtered_stream, usage=usage)
except HTTPException:
raise
except Exception as e:
print(e)
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"{e}")
@trace_method
async def send_group_message_to_agent(
self,
group_id: str,
actor: User,
input_messages: Union[List[Message], List[MessageCreate]],
stream_steps: bool,
stream_tokens: bool,
chat_completion_mode: bool = False,
# Support for AssistantMessage
use_assistant_message: bool = True,
assistant_message_tool_name: str = constants.DEFAULT_MESSAGE_TOOL,
assistant_message_tool_kwarg: str = constants.DEFAULT_MESSAGE_TOOL_KWARG,
metadata: Optional[dict] = None,
) -> Union[StreamingResponse, LettaResponse]:
include_final_message = True
if not stream_steps and stream_tokens:
raise ValueError("stream_steps must be 'true' if stream_tokens is 'true'")
group = self.group_manager.retrieve_group(group_id=group_id, actor=actor)
agent_state_id = group.manager_agent_id or (group.agent_ids[0] if len(group.agent_ids) > 0 else None)
agent_state = self.agent_manager.get_agent_by_id(agent_id=agent_state_id, actor=actor) if agent_state_id else None
letta_multi_agent = load_multi_agent(group=group, agent_state=agent_state, actor=actor)
llm_config = letta_multi_agent.agent_state.llm_config
supports_token_streaming = ["openai", "anthropic", "deepseek"]
if stream_tokens and (
llm_config.model_endpoint_type not in supports_token_streaming or llm_config.model_endpoint == constants.LETTA_MODEL_ENDPOINT
):
warnings.warn(
f"Token streaming is only supported for models with type {' or '.join(supports_token_streaming)} in the model_endpoint: agent has endpoint type {llm_config.model_endpoint_type} and {llm_config.model_endpoint}. Setting stream_tokens to False."
)
stream_tokens = False
# Create a new interface per request
letta_multi_agent.interface = StreamingServerInterface(
use_assistant_message=use_assistant_message,
assistant_message_tool_name=assistant_message_tool_name,
assistant_message_tool_kwarg=assistant_message_tool_kwarg,
inner_thoughts_in_kwargs=(
llm_config.put_inner_thoughts_in_kwargs if llm_config.put_inner_thoughts_in_kwargs is not None else False
),
)
streaming_interface = letta_multi_agent.interface
if not isinstance(streaming_interface, StreamingServerInterface):
raise ValueError(f"Agent has wrong type of interface: {type(streaming_interface)}")
streaming_interface.streaming_mode = stream_tokens
streaming_interface.streaming_chat_completion_mode = chat_completion_mode
if metadata and hasattr(streaming_interface, "metadata"):
streaming_interface.metadata = metadata
streaming_interface.stream_start()
task = asyncio.create_task(
asyncio.to_thread(
letta_multi_agent.step,
input_messages=input_messages,
chaining=self.chaining,
max_chaining_steps=self.max_chaining_steps,
)
)
if stream_steps:
# return a stream
return StreamingResponse(
sse_async_generator(
streaming_interface.get_generator(),
usage_task=task,
finish_message=include_final_message,
),
media_type="text/event-stream",
)
else:
# buffer the stream, then return the list
generated_stream = []
async for message in streaming_interface.get_generator():
assert (
isinstance(message, LettaMessage) or isinstance(message, LegacyLettaMessage) or isinstance(message, MessageStreamStatus)
), type(message)
generated_stream.append(message)
if message == MessageStreamStatus.done:
break
# Get rid of the stream status messages
filtered_stream = [d for d in generated_stream if not isinstance(d, MessageStreamStatus)]
usage = await task
# By default the stream will be messages of type LettaMessage or LettaLegacyMessage
# If we want to convert these to Message, we can use the attached IDs
# NOTE: we will need to de-duplicate the Messsage IDs though (since Assistant->Inner+Func_Call)
# TODO: eventually update the interface to use `Message` and `MessageChunk` (new) inside the deque instead
return LettaResponse(messages=filtered_stream, usage=usage)