mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00

Co-authored-by: Kian Jones <11655409+kianjones9@users.noreply.github.com> Co-authored-by: Andy Li <55300002+cliandy@users.noreply.github.com> Co-authored-by: Matthew Zhou <mattzh1314@gmail.com>
1135 lines
44 KiB
Python
1135 lines
44 KiB
Python
import json
|
|
import re
|
|
import time
|
|
import warnings
|
|
from typing import Generator, List, Optional, Union
|
|
|
|
import anthropic
|
|
from anthropic import PermissionDeniedError
|
|
from anthropic.types.beta import (
|
|
BetaRawContentBlockDeltaEvent,
|
|
BetaRawContentBlockStartEvent,
|
|
BetaRawContentBlockStopEvent,
|
|
BetaRawMessageDeltaEvent,
|
|
BetaRawMessageStartEvent,
|
|
BetaRawMessageStopEvent,
|
|
BetaRedactedThinkingBlock,
|
|
BetaTextBlock,
|
|
BetaThinkingBlock,
|
|
BetaToolUseBlock,
|
|
)
|
|
|
|
from letta.errors import BedrockError, BedrockPermissionError
|
|
from letta.helpers.datetime_helpers import get_utc_time_int, timestamp_to_datetime
|
|
from letta.llm_api.aws_bedrock import get_bedrock_client
|
|
from letta.llm_api.helpers import add_inner_thoughts_to_functions
|
|
from letta.local_llm.constants import INNER_THOUGHTS_KWARG, INNER_THOUGHTS_KWARG_DESCRIPTION
|
|
from letta.local_llm.utils import num_tokens_from_functions, num_tokens_from_messages
|
|
from letta.log import get_logger
|
|
from letta.schemas.enums import ProviderType
|
|
from letta.schemas.message import Message as _Message
|
|
from letta.schemas.message import MessageRole as _MessageRole
|
|
from letta.schemas.openai.chat_completion_request import ChatCompletionRequest, Tool
|
|
from letta.schemas.openai.chat_completion_response import (
|
|
ChatCompletionChunkResponse,
|
|
ChatCompletionResponse,
|
|
Choice,
|
|
ChunkChoice,
|
|
FunctionCall,
|
|
FunctionCallDelta,
|
|
)
|
|
from letta.schemas.openai.chat_completion_response import Message
|
|
from letta.schemas.openai.chat_completion_response import Message as ChoiceMessage
|
|
from letta.schemas.openai.chat_completion_response import MessageDelta, ToolCall, ToolCallDelta, UsageStatistics
|
|
from letta.services.provider_manager import ProviderManager
|
|
from letta.settings import model_settings
|
|
from letta.streaming_interface import AgentChunkStreamingInterface, AgentRefreshStreamingInterface
|
|
from letta.tracing import log_event
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
BASE_URL = "https://api.anthropic.com/v1"
|
|
|
|
|
|
# https://docs.anthropic.com/claude/docs/models-overview
|
|
# Sadly hardcoded
|
|
MODEL_LIST = [
|
|
## Opus
|
|
{
|
|
"name": "claude-3-opus-20240229",
|
|
"context_window": 200000,
|
|
},
|
|
# latest
|
|
{
|
|
"name": "claude-3-opus-latest",
|
|
"context_window": 200000,
|
|
},
|
|
## Sonnet
|
|
# 3.0
|
|
{
|
|
"name": "claude-3-sonnet-20240229",
|
|
"context_window": 200000,
|
|
},
|
|
# 3.5
|
|
{
|
|
"name": "claude-3-5-sonnet-20240620",
|
|
"context_window": 200000,
|
|
},
|
|
# 3.5 new
|
|
{
|
|
"name": "claude-3-5-sonnet-20241022",
|
|
"context_window": 200000,
|
|
},
|
|
# 3.5 latest
|
|
{
|
|
"name": "claude-3-5-sonnet-latest",
|
|
"context_window": 200000,
|
|
},
|
|
# 3.7
|
|
{
|
|
"name": "claude-3-7-sonnet-20250219",
|
|
"context_window": 200000,
|
|
},
|
|
# 3.7 latest
|
|
{
|
|
"name": "claude-3-7-sonnet-latest",
|
|
"context_window": 200000,
|
|
},
|
|
## Haiku
|
|
# 3.0
|
|
{
|
|
"name": "claude-3-haiku-20240307",
|
|
"context_window": 200000,
|
|
},
|
|
# 3.5
|
|
{
|
|
"name": "claude-3-5-haiku-20241022",
|
|
"context_window": 200000,
|
|
},
|
|
# 3.5 latest
|
|
{
|
|
"name": "claude-3-5-haiku-latest",
|
|
"context_window": 200000,
|
|
},
|
|
]
|
|
|
|
DUMMY_FIRST_USER_MESSAGE = "User initializing bootup sequence."
|
|
|
|
|
|
def antropic_get_model_context_window(url: str, api_key: Union[str, None], model: str) -> int:
|
|
for model_dict in anthropic_get_model_list(url=url, api_key=api_key):
|
|
if model_dict["name"] == model:
|
|
return model_dict["context_window"]
|
|
raise ValueError(f"Can't find model '{model}' in Anthropic model list")
|
|
|
|
|
|
def anthropic_get_model_list(url: str, api_key: Union[str, None]) -> dict:
|
|
"""https://docs.anthropic.com/claude/docs/models-overview"""
|
|
|
|
# NOTE: currently there is no GET /models, so we need to hardcode
|
|
# return MODEL_LIST
|
|
|
|
if api_key:
|
|
anthropic_client = anthropic.Anthropic(api_key=api_key)
|
|
elif model_settings.anthropic_api_key:
|
|
anthropic_client = anthropic.Anthropic()
|
|
else:
|
|
raise ValueError("No API key provided")
|
|
|
|
models = anthropic_client.models.list()
|
|
models_json = models.model_dump()
|
|
assert "data" in models_json, f"Anthropic model query response missing 'data' field: {models_json}"
|
|
return models_json["data"]
|
|
|
|
|
|
def convert_tools_to_anthropic_format(tools: List[Tool]) -> List[dict]:
|
|
"""See: https://docs.anthropic.com/claude/docs/tool-use
|
|
|
|
OpenAI style:
|
|
"tools": [{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "find_movies",
|
|
"description": "find ....",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
PARAM: {
|
|
"type": PARAM_TYPE, # eg "string"
|
|
"description": PARAM_DESCRIPTION,
|
|
},
|
|
...
|
|
},
|
|
"required": List[str],
|
|
}
|
|
}
|
|
}
|
|
]
|
|
|
|
Anthropic style:
|
|
"tools": [{
|
|
"name": "find_movies",
|
|
"description": "find ....",
|
|
"input_schema": {
|
|
"type": "object",
|
|
"properties": {
|
|
PARAM: {
|
|
"type": PARAM_TYPE, # eg "string"
|
|
"description": PARAM_DESCRIPTION,
|
|
},
|
|
...
|
|
},
|
|
"required": List[str],
|
|
}
|
|
}
|
|
]
|
|
|
|
Two small differences:
|
|
- 1 level less of nesting
|
|
- "parameters" -> "input_schema"
|
|
"""
|
|
formatted_tools = []
|
|
for tool in tools:
|
|
formatted_tool = {
|
|
"name": tool.function.name,
|
|
"description": tool.function.description,
|
|
"input_schema": tool.function.parameters or {"type": "object", "properties": {}, "required": []},
|
|
}
|
|
formatted_tools.append(formatted_tool)
|
|
|
|
return formatted_tools
|
|
|
|
|
|
def merge_tool_results_into_user_messages(messages: List[dict]):
|
|
"""Anthropic API doesn't allow role 'tool'->'user' sequences
|
|
|
|
Example HTTP error:
|
|
messages: roles must alternate between "user" and "assistant", but found multiple "user" roles in a row
|
|
|
|
From: https://docs.anthropic.com/claude/docs/tool-use
|
|
You may be familiar with other APIs that return tool use as separate from the model's primary output,
|
|
or which use a special-purpose tool or function message role.
|
|
In contrast, Anthropic's models and API are built around alternating user and assistant messages,
|
|
where each message is an array of rich content blocks: text, image, tool_use, and tool_result.
|
|
"""
|
|
|
|
# TODO walk through the messages list
|
|
# When a dict (dict_A) with 'role' == 'user' is followed by a dict with 'role' == 'user' (dict B), do the following
|
|
# dict_A["content"] = dict_A["content"] + dict_B["content"]
|
|
|
|
# The result should be a new merged_messages list that doesn't have any back-to-back dicts with 'role' == 'user'
|
|
merged_messages = []
|
|
if not messages:
|
|
return merged_messages
|
|
|
|
# Start with the first message in the list
|
|
current_message = messages[0]
|
|
|
|
for next_message in messages[1:]:
|
|
if current_message["role"] == "user" and next_message["role"] == "user":
|
|
# Merge contents of the next user message into current one
|
|
current_content = (
|
|
current_message["content"]
|
|
if isinstance(current_message["content"], list)
|
|
else [{"type": "text", "text": current_message["content"]}]
|
|
)
|
|
next_content = (
|
|
next_message["content"]
|
|
if isinstance(next_message["content"], list)
|
|
else [{"type": "text", "text": next_message["content"]}]
|
|
)
|
|
merged_content = current_content + next_content
|
|
current_message["content"] = merged_content
|
|
else:
|
|
# Append the current message to result as it's complete
|
|
merged_messages.append(current_message)
|
|
# Move on to the next message
|
|
current_message = next_message
|
|
|
|
# Append the last processed message to the result
|
|
merged_messages.append(current_message)
|
|
|
|
return merged_messages
|
|
|
|
|
|
def remap_finish_reason(stop_reason: str) -> str:
|
|
"""Remap Anthropic's 'stop_reason' to OpenAI 'finish_reason'
|
|
|
|
OpenAI: 'stop', 'length', 'function_call', 'content_filter', null
|
|
see: https://platform.openai.com/docs/guides/text-generation/chat-completions-api
|
|
|
|
From: https://docs.anthropic.com/claude/reference/migrating-from-text-completions-to-messages#stop-reason
|
|
|
|
Messages have a stop_reason of one of the following values:
|
|
"end_turn": The conversational turn ended naturally.
|
|
"stop_sequence": One of your specified custom stop sequences was generated.
|
|
"max_tokens": (unchanged)
|
|
|
|
"""
|
|
if stop_reason == "end_turn":
|
|
return "stop"
|
|
elif stop_reason == "stop_sequence":
|
|
return "stop"
|
|
elif stop_reason == "max_tokens":
|
|
return "length"
|
|
elif stop_reason == "tool_use":
|
|
return "function_call"
|
|
else:
|
|
raise ValueError(f"Unexpected stop_reason: {stop_reason}")
|
|
|
|
|
|
def strip_xml_tags(string: str, tag: Optional[str]) -> str:
|
|
if tag is None:
|
|
return string
|
|
# Construct the regular expression pattern to find the start and end tags
|
|
tag_pattern = f"<{tag}.*?>|</{tag}>"
|
|
# Use the regular expression to replace the tags with an empty string
|
|
return re.sub(tag_pattern, "", string)
|
|
|
|
|
|
def strip_xml_tags_streaming(string: str, tag: Optional[str]) -> str:
|
|
if tag is None:
|
|
return string
|
|
|
|
# Handle common partial tag cases
|
|
parts_to_remove = [
|
|
"<", # Leftover start bracket
|
|
f"<{tag}", # Opening tag start
|
|
f"</{tag}", # Closing tag start
|
|
f"/{tag}>", # Closing tag end
|
|
f"{tag}>", # Opening tag end
|
|
f"/{tag}", # Partial closing tag without >
|
|
">", # Leftover end bracket
|
|
]
|
|
|
|
result = string
|
|
for part in parts_to_remove:
|
|
result = result.replace(part, "")
|
|
|
|
return result
|
|
|
|
|
|
def convert_anthropic_response_to_chatcompletion(
|
|
response: anthropic.types.Message,
|
|
inner_thoughts_xml_tag: Optional[str] = None,
|
|
) -> ChatCompletionResponse:
|
|
"""
|
|
Example response from Claude 3:
|
|
response.json = {
|
|
'id': 'msg_01W1xg9hdRzbeN2CfZM7zD2w',
|
|
'type': 'message',
|
|
'role': 'assistant',
|
|
'content': [
|
|
{
|
|
'type': 'text',
|
|
'text': "<thinking>Analyzing user login event. This is Chad's first
|
|
interaction with me. I will adjust my personality and rapport accordingly.</thinking>"
|
|
},
|
|
{
|
|
'type':
|
|
'tool_use',
|
|
'id': 'toolu_01Ka4AuCmfvxiidnBZuNfP1u',
|
|
'name': 'core_memory_append',
|
|
'input': {
|
|
'name': 'human',
|
|
'content': 'Chad is logging in for the first time. I will aim to build a warm
|
|
and welcoming rapport.',
|
|
'request_heartbeat': True
|
|
}
|
|
}
|
|
],
|
|
'model': 'claude-3-haiku-20240307',
|
|
'stop_reason': 'tool_use',
|
|
'stop_sequence': None,
|
|
'usage': {
|
|
'input_tokens': 3305,
|
|
'output_tokens': 141
|
|
}
|
|
}
|
|
"""
|
|
prompt_tokens = response.usage.input_tokens
|
|
completion_tokens = response.usage.output_tokens
|
|
finish_reason = remap_finish_reason(response.stop_reason)
|
|
|
|
content = None
|
|
reasoning_content = None
|
|
reasoning_content_signature = None
|
|
redacted_reasoning_content = None
|
|
tool_calls = None
|
|
|
|
if len(response.content) > 0:
|
|
for content_part in response.content:
|
|
if content_part.type == "text":
|
|
content = strip_xml_tags(string=content_part.text, tag=inner_thoughts_xml_tag)
|
|
if content_part.type == "tool_use":
|
|
tool_calls = [
|
|
ToolCall(
|
|
id=content_part.id,
|
|
type="function",
|
|
function=FunctionCall(
|
|
name=content_part.name,
|
|
arguments=json.dumps(content_part.input, indent=2),
|
|
),
|
|
)
|
|
]
|
|
if content_part.type == "thinking":
|
|
reasoning_content = content_part.thinking
|
|
reasoning_content_signature = content_part.signature
|
|
if content_part.type == "redacted_thinking":
|
|
redacted_reasoning_content = content_part.data
|
|
|
|
else:
|
|
raise RuntimeError("Unexpected empty content in response")
|
|
|
|
assert response.role == "assistant"
|
|
choice = Choice(
|
|
index=0,
|
|
finish_reason=finish_reason,
|
|
message=ChoiceMessage(
|
|
role=response.role,
|
|
content=content,
|
|
reasoning_content=reasoning_content,
|
|
reasoning_content_signature=reasoning_content_signature,
|
|
redacted_reasoning_content=redacted_reasoning_content,
|
|
tool_calls=tool_calls,
|
|
),
|
|
)
|
|
|
|
return ChatCompletionResponse(
|
|
id=response.id,
|
|
choices=[choice],
|
|
created=get_utc_time_int(),
|
|
model=response.model,
|
|
usage=UsageStatistics(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
),
|
|
)
|
|
|
|
|
|
def convert_anthropic_stream_event_to_chatcompletion(
|
|
event: Union[
|
|
BetaRawMessageStartEvent,
|
|
BetaRawContentBlockStartEvent,
|
|
BetaRawContentBlockDeltaEvent,
|
|
BetaRawContentBlockStopEvent,
|
|
BetaRawMessageDeltaEvent,
|
|
BetaRawMessageStopEvent,
|
|
],
|
|
message_id: str,
|
|
model: str,
|
|
inner_thoughts_xml_tag: Optional[str] = "thinking",
|
|
) -> ChatCompletionChunkResponse:
|
|
"""Convert Anthropic stream events to OpenAI ChatCompletionResponse format.
|
|
|
|
Args:
|
|
event: The event to convert
|
|
message_id: The ID of the message. Anthropic does not return this on every event, so we need to keep track of it
|
|
model: The model used. Anthropic does not return this on every event, so we need to keep track of it
|
|
|
|
Example response from OpenAI:
|
|
|
|
'id': 'MESSAGE_ID',
|
|
'choices': [
|
|
{
|
|
'finish_reason': None,
|
|
'index': 0,
|
|
'delta': {
|
|
'content': None,
|
|
'tool_calls': [
|
|
{
|
|
'index': 0,
|
|
'id': None,
|
|
'type': 'function',
|
|
'function': {
|
|
'name': None,
|
|
'arguments': '_th'
|
|
}
|
|
}
|
|
],
|
|
'function_call': None
|
|
},
|
|
'logprobs': None
|
|
}
|
|
],
|
|
'created': 1713216662,
|
|
'model': 'gpt-4o-mini-2024-07-18',
|
|
'system_fingerprint': 'fp_bd83329f63',
|
|
'object': 'chat.completion.chunk'
|
|
}
|
|
"""
|
|
# Get finish reason
|
|
finish_reason = None
|
|
completion_chunk_tokens = 0
|
|
|
|
# Get content and tool calls
|
|
content = None
|
|
reasoning_content = None
|
|
reasoning_content_signature = None
|
|
redacted_reasoning_content = None # NOTE called "data" in the stream
|
|
tool_calls = None
|
|
if isinstance(event, BetaRawMessageStartEvent):
|
|
"""
|
|
BetaRawMessageStartEvent(
|
|
message=BetaMessage(
|
|
content=[],
|
|
usage=BetaUsage(
|
|
input_tokens=3086,
|
|
output_tokens=1,
|
|
),
|
|
...,
|
|
),
|
|
type='message_start'
|
|
)
|
|
"""
|
|
completion_chunk_tokens += event.message.usage.output_tokens
|
|
|
|
elif isinstance(event, BetaRawMessageDeltaEvent):
|
|
"""
|
|
BetaRawMessageDeltaEvent(
|
|
delta=Delta(
|
|
stop_reason='tool_use',
|
|
stop_sequence=None
|
|
),
|
|
type='message_delta',
|
|
usage=BetaMessageDeltaUsage(output_tokens=45)
|
|
)
|
|
"""
|
|
finish_reason = remap_finish_reason(event.delta.stop_reason)
|
|
completion_chunk_tokens += event.usage.output_tokens
|
|
|
|
elif isinstance(event, BetaRawContentBlockDeltaEvent):
|
|
"""
|
|
BetaRawContentBlockDeltaEvent(
|
|
delta=BetaInputJSONDelta(
|
|
partial_json='lo',
|
|
type='input_json_delta'
|
|
),
|
|
index=0,
|
|
type='content_block_delta'
|
|
)
|
|
|
|
OR
|
|
|
|
BetaRawContentBlockDeltaEvent(
|
|
delta=BetaTextDelta(
|
|
text='👋 ',
|
|
type='text_delta'
|
|
),
|
|
index=0,
|
|
type='content_block_delta'
|
|
)
|
|
|
|
"""
|
|
# ReACT COT
|
|
if event.delta.type == "text_delta":
|
|
content = strip_xml_tags_streaming(string=event.delta.text, tag=inner_thoughts_xml_tag)
|
|
|
|
# Extended thought COT
|
|
elif event.delta.type == "thinking_delta":
|
|
# Redacted doesn't come in the delta chunks, comes all at once
|
|
# "redacted_thinking blocks will not have any deltas associated and will be sent as a single event."
|
|
# Thinking might start with ""
|
|
if len(event.delta.thinking) > 0:
|
|
reasoning_content = event.delta.thinking
|
|
|
|
# Extended thought COT signature
|
|
elif event.delta.type == "signature_delta":
|
|
if len(event.delta.signature) > 0:
|
|
reasoning_content_signature = event.delta.signature
|
|
|
|
# Tool calling
|
|
elif event.delta.type == "input_json_delta":
|
|
tool_calls = [
|
|
ToolCallDelta(
|
|
index=0,
|
|
function=FunctionCallDelta(
|
|
name=None,
|
|
arguments=event.delta.partial_json,
|
|
),
|
|
)
|
|
]
|
|
else:
|
|
warnings.warn("Unexpected delta type: " + event.delta.type)
|
|
|
|
elif isinstance(event, BetaRawContentBlockStartEvent):
|
|
"""
|
|
BetaRawContentBlockStartEvent(
|
|
content_block=BetaToolUseBlock(
|
|
id='toolu_01LmpZhRhR3WdrRdUrfkKfFw',
|
|
input={},
|
|
name='get_weather',
|
|
type='tool_use'
|
|
),
|
|
index=0,
|
|
type='content_block_start'
|
|
)
|
|
|
|
OR
|
|
|
|
BetaRawContentBlockStartEvent(
|
|
content_block=BetaTextBlock(
|
|
text='',
|
|
type='text'
|
|
),
|
|
index=0,
|
|
type='content_block_start'
|
|
)
|
|
"""
|
|
if isinstance(event.content_block, BetaToolUseBlock):
|
|
tool_calls = [
|
|
ToolCallDelta(
|
|
index=0,
|
|
id=event.content_block.id,
|
|
function=FunctionCallDelta(
|
|
name=event.content_block.name,
|
|
arguments="",
|
|
),
|
|
)
|
|
]
|
|
elif isinstance(event.content_block, BetaTextBlock):
|
|
content = event.content_block.text
|
|
elif isinstance(event.content_block, BetaThinkingBlock):
|
|
reasoning_content = event.content_block.thinking
|
|
elif isinstance(event.content_block, BetaRedactedThinkingBlock):
|
|
redacted_reasoning_content = event.content_block.data
|
|
else:
|
|
warnings.warn("Unexpected content start type: " + str(type(event.content_block)))
|
|
|
|
else:
|
|
warnings.warn("Unexpected event type: " + event.type)
|
|
|
|
# Initialize base response
|
|
choice = ChunkChoice(
|
|
index=0,
|
|
finish_reason=finish_reason,
|
|
delta=MessageDelta(
|
|
content=content,
|
|
reasoning_content=reasoning_content,
|
|
reasoning_content_signature=reasoning_content_signature,
|
|
redacted_reasoning_content=redacted_reasoning_content,
|
|
tool_calls=tool_calls,
|
|
),
|
|
)
|
|
return ChatCompletionChunkResponse(
|
|
id=message_id,
|
|
choices=[choice],
|
|
created=get_utc_time_int(),
|
|
model=model,
|
|
output_tokens=completion_chunk_tokens,
|
|
)
|
|
|
|
|
|
def _prepare_anthropic_request(
|
|
data: ChatCompletionRequest,
|
|
inner_thoughts_xml_tag: Optional[str] = "thinking",
|
|
# if true, prefix fill the generation with the thinking tag
|
|
prefix_fill: bool = False,
|
|
# if true, put COT inside the tool calls instead of inside the content
|
|
put_inner_thoughts_in_kwargs: bool = True,
|
|
bedrock: bool = False,
|
|
# extended thinking related fields
|
|
# https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
|
|
extended_thinking: bool = False,
|
|
max_reasoning_tokens: Optional[int] = None,
|
|
) -> dict:
|
|
"""Prepare the request data for Anthropic API format."""
|
|
if extended_thinking:
|
|
assert (
|
|
max_reasoning_tokens is not None and max_reasoning_tokens < data.max_tokens
|
|
), "max tokens must be greater than thinking budget"
|
|
if put_inner_thoughts_in_kwargs:
|
|
logger.warning("Extended thinking not compatible with put_inner_thoughts_in_kwargs")
|
|
put_inner_thoughts_in_kwargs = False
|
|
# assert not prefix_fill, "extended thinking not compatible with prefix_fill"
|
|
# Silently disable prefix_fill for now
|
|
prefix_fill = False
|
|
|
|
# if needed, put inner thoughts as a kwarg for all tools
|
|
if data.tools and put_inner_thoughts_in_kwargs:
|
|
functions = add_inner_thoughts_to_functions(
|
|
functions=[t.function.model_dump() for t in data.tools],
|
|
inner_thoughts_key=INNER_THOUGHTS_KWARG,
|
|
inner_thoughts_description=INNER_THOUGHTS_KWARG_DESCRIPTION,
|
|
)
|
|
data.tools = [Tool(function=f) for f in functions]
|
|
|
|
# convert the tools to Anthropic's payload format
|
|
anthropic_tools = None if data.tools is None else convert_tools_to_anthropic_format(data.tools)
|
|
|
|
# pydantic -> dict
|
|
data = data.model_dump(exclude_none=True)
|
|
|
|
if extended_thinking:
|
|
data["thinking"] = {
|
|
"type": "enabled",
|
|
"budget_tokens": max_reasoning_tokens,
|
|
}
|
|
# `temperature` may only be set to 1 when thinking is enabled. Please consult our documentation at https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking#important-considerations-when-using-extended-thinking'
|
|
data["temperature"] = 1.0
|
|
|
|
if "functions" in data:
|
|
raise ValueError(f"'functions' unexpected in Anthropic API payload")
|
|
|
|
# Handle tools
|
|
if "tools" in data and data["tools"] is None:
|
|
data.pop("tools")
|
|
data.pop("tool_choice", None)
|
|
elif anthropic_tools is not None:
|
|
# TODO eventually enable parallel tool use
|
|
data["tools"] = anthropic_tools
|
|
|
|
# Move 'system' to the top level
|
|
assert data["messages"][0]["role"] == "system", f"Expected 'system' role in messages[0]:\n{data['messages'][0]}"
|
|
data["system"] = data["messages"][0]["content"]
|
|
data["messages"] = data["messages"][1:]
|
|
|
|
# Process messages
|
|
for message in data["messages"]:
|
|
if "content" not in message:
|
|
message["content"] = None
|
|
|
|
# Convert to Anthropic format
|
|
msg_objs = [
|
|
_Message.dict_to_message(
|
|
agent_id=None,
|
|
openai_message_dict=m,
|
|
)
|
|
for m in data["messages"]
|
|
]
|
|
data["messages"] = [
|
|
m.to_anthropic_dict(
|
|
inner_thoughts_xml_tag=inner_thoughts_xml_tag,
|
|
put_inner_thoughts_in_kwargs=put_inner_thoughts_in_kwargs,
|
|
)
|
|
for m in msg_objs
|
|
]
|
|
|
|
# Ensure first message is user
|
|
if data["messages"][0]["role"] != "user":
|
|
data["messages"] = [{"role": "user", "content": DUMMY_FIRST_USER_MESSAGE}] + data["messages"]
|
|
|
|
# Handle alternating messages
|
|
data["messages"] = merge_tool_results_into_user_messages(data["messages"])
|
|
|
|
# Handle prefix fill (not compatible with inner-thouguhts-in-kwargs)
|
|
# https://docs.anthropic.com/en/api/messages#body-messages
|
|
# NOTE: cannot prefill with tools for opus:
|
|
# Your API request included an `assistant` message in the final position, which would pre-fill the `assistant` response. When using tools with "claude-3-opus-20240229"
|
|
if prefix_fill and not put_inner_thoughts_in_kwargs and "opus" not in data["model"]:
|
|
if not bedrock: # not support for bedrock
|
|
data["messages"].append(
|
|
# Start the thinking process for the assistant
|
|
{"role": "assistant", "content": f"<{inner_thoughts_xml_tag}>"},
|
|
)
|
|
|
|
# Validate max_tokens
|
|
assert "max_tokens" in data, data
|
|
|
|
# Remove OpenAI-specific fields
|
|
for field in ["frequency_penalty", "logprobs", "n", "top_p", "presence_penalty", "user", "stream"]:
|
|
data.pop(field, None)
|
|
|
|
return data
|
|
|
|
|
|
def anthropic_chat_completions_request(
|
|
data: ChatCompletionRequest,
|
|
inner_thoughts_xml_tag: Optional[str] = "thinking",
|
|
put_inner_thoughts_in_kwargs: bool = False,
|
|
extended_thinking: bool = False,
|
|
max_reasoning_tokens: Optional[int] = None,
|
|
provider_name: Optional[str] = None,
|
|
betas: List[str] = ["tools-2024-04-04"],
|
|
) -> ChatCompletionResponse:
|
|
"""https://docs.anthropic.com/claude/docs/tool-use"""
|
|
anthropic_client = None
|
|
if provider_name and provider_name != ProviderType.anthropic.value:
|
|
api_key = ProviderManager().get_override_key(provider_name)
|
|
anthropic_client = anthropic.Anthropic(api_key=api_key)
|
|
elif model_settings.anthropic_api_key:
|
|
anthropic_client = anthropic.Anthropic()
|
|
else:
|
|
raise ValueError("No available Anthropic API key")
|
|
data = _prepare_anthropic_request(
|
|
data=data,
|
|
inner_thoughts_xml_tag=inner_thoughts_xml_tag,
|
|
put_inner_thoughts_in_kwargs=put_inner_thoughts_in_kwargs,
|
|
extended_thinking=extended_thinking,
|
|
max_reasoning_tokens=max_reasoning_tokens,
|
|
)
|
|
log_event(name="llm_request_sent", attributes=data)
|
|
response = anthropic_client.beta.messages.create(
|
|
**data,
|
|
betas=betas,
|
|
)
|
|
log_event(name="llm_response_received", attributes={"response": response.json()})
|
|
return convert_anthropic_response_to_chatcompletion(response=response, inner_thoughts_xml_tag=inner_thoughts_xml_tag)
|
|
|
|
|
|
def anthropic_bedrock_chat_completions_request(
|
|
data: ChatCompletionRequest,
|
|
inner_thoughts_xml_tag: Optional[str] = "thinking",
|
|
) -> ChatCompletionResponse:
|
|
"""Make a chat completion request to Anthropic via AWS Bedrock."""
|
|
data = _prepare_anthropic_request(data, inner_thoughts_xml_tag, bedrock=True)
|
|
|
|
# Get the client
|
|
client = get_bedrock_client()
|
|
|
|
# Make the request
|
|
try:
|
|
# bedrock does not support certain args
|
|
print("Warning: Tool rules not supported with Anthropic Bedrock")
|
|
data["tool_choice"] = {"type": "any"}
|
|
log_event(name="llm_request_sent", attributes=data)
|
|
response = client.messages.create(**data)
|
|
log_event(name="llm_response_received", attributes={"response": response.json()})
|
|
return convert_anthropic_response_to_chatcompletion(response=response, inner_thoughts_xml_tag=inner_thoughts_xml_tag)
|
|
except PermissionDeniedError:
|
|
raise BedrockPermissionError(f"User does not have access to the Bedrock model with the specified ID. {data['model']}")
|
|
except Exception as e:
|
|
raise BedrockError(f"Bedrock error: {e}")
|
|
|
|
|
|
def anthropic_chat_completions_request_stream(
|
|
data: ChatCompletionRequest,
|
|
inner_thoughts_xml_tag: Optional[str] = "thinking",
|
|
put_inner_thoughts_in_kwargs: bool = False,
|
|
extended_thinking: bool = False,
|
|
max_reasoning_tokens: Optional[int] = None,
|
|
provider_name: Optional[str] = None,
|
|
betas: List[str] = ["tools-2024-04-04"],
|
|
) -> Generator[ChatCompletionChunkResponse, None, None]:
|
|
"""Stream chat completions from Anthropic API.
|
|
|
|
Similar to OpenAI's streaming, but using Anthropic's native streaming support.
|
|
See: https://docs.anthropic.com/claude/reference/messages-streaming
|
|
"""
|
|
data = _prepare_anthropic_request(
|
|
data=data,
|
|
inner_thoughts_xml_tag=inner_thoughts_xml_tag,
|
|
put_inner_thoughts_in_kwargs=put_inner_thoughts_in_kwargs,
|
|
extended_thinking=extended_thinking,
|
|
max_reasoning_tokens=max_reasoning_tokens,
|
|
)
|
|
if provider_name and provider_name != ProviderType.anthropic.value:
|
|
api_key = ProviderManager().get_override_key(provider_name)
|
|
anthropic_client = anthropic.Anthropic(api_key=api_key)
|
|
elif model_settings.anthropic_api_key:
|
|
anthropic_client = anthropic.Anthropic()
|
|
|
|
with anthropic_client.beta.messages.stream(
|
|
**data,
|
|
betas=betas,
|
|
) as stream:
|
|
# Stream: https://github.com/anthropics/anthropic-sdk-python/blob/d212ec9f6d5e956f13bc0ddc3d86b5888a954383/src/anthropic/lib/streaming/_beta_messages.py#L22
|
|
message_id = None
|
|
model = None
|
|
|
|
for chunk in stream._raw_stream:
|
|
time.sleep(0.01) # Anthropic is really fast, faster than frontend can upload.
|
|
if isinstance(chunk, BetaRawMessageStartEvent):
|
|
"""
|
|
BetaRawMessageStartEvent(
|
|
message=BetaMessage(
|
|
id='MESSAGE ID HERE',
|
|
content=[],
|
|
model='claude-3-5-sonnet-20241022',
|
|
role='assistant',
|
|
stop_reason=None,
|
|
stop_sequence=None,
|
|
type='message',
|
|
usage=BetaUsage(
|
|
cache_creation_input_tokens=0,
|
|
cache_read_input_tokens=0,
|
|
input_tokens=30,
|
|
output_tokens=4
|
|
)
|
|
),
|
|
type='message_start'
|
|
),
|
|
"""
|
|
message_id = chunk.message.id
|
|
model = chunk.message.model
|
|
yield convert_anthropic_stream_event_to_chatcompletion(chunk, message_id, model, inner_thoughts_xml_tag)
|
|
|
|
|
|
def anthropic_chat_completions_process_stream(
|
|
chat_completion_request: ChatCompletionRequest,
|
|
stream_interface: Optional[Union[AgentChunkStreamingInterface, AgentRefreshStreamingInterface]] = None,
|
|
inner_thoughts_xml_tag: Optional[str] = "thinking",
|
|
put_inner_thoughts_in_kwargs: bool = False,
|
|
extended_thinking: bool = False,
|
|
max_reasoning_tokens: Optional[int] = None,
|
|
provider_name: Optional[str] = None,
|
|
create_message_id: bool = True,
|
|
create_message_datetime: bool = True,
|
|
betas: List[str] = ["tools-2024-04-04"],
|
|
name: Optional[str] = None,
|
|
) -> ChatCompletionResponse:
|
|
"""Process a streaming completion response from Anthropic, similar to OpenAI's streaming.
|
|
|
|
Args:
|
|
api_key: The Anthropic API key
|
|
chat_completion_request: The chat completion request
|
|
stream_interface: Interface for handling streaming chunks
|
|
inner_thoughts_xml_tag: Tag for inner thoughts in the response
|
|
create_message_id: Whether to create a message ID
|
|
create_message_datetime: Whether to create message datetime
|
|
betas: Beta features to enable
|
|
|
|
Returns:
|
|
The final ChatCompletionResponse
|
|
"""
|
|
assert chat_completion_request.stream == True
|
|
assert stream_interface is not None, "Required"
|
|
|
|
# Count prompt tokens - we'll get completion tokens from the final response
|
|
chat_history = [m.model_dump(exclude_none=True) for m in chat_completion_request.messages]
|
|
prompt_tokens = num_tokens_from_messages(
|
|
messages=chat_history,
|
|
model=chat_completion_request.model,
|
|
)
|
|
|
|
# Add tokens for tools if present
|
|
if chat_completion_request.tools is not None:
|
|
assert chat_completion_request.functions is None
|
|
prompt_tokens += num_tokens_from_functions(
|
|
functions=[t.function.model_dump() for t in chat_completion_request.tools],
|
|
model=chat_completion_request.model,
|
|
)
|
|
elif chat_completion_request.functions is not None:
|
|
assert chat_completion_request.tools is None
|
|
prompt_tokens += num_tokens_from_functions(
|
|
functions=[f.model_dump() for f in chat_completion_request.functions],
|
|
model=chat_completion_request.model,
|
|
)
|
|
|
|
# Create a dummy message for ID/datetime if needed
|
|
dummy_message = _Message(
|
|
role=_MessageRole.assistant,
|
|
content=[],
|
|
agent_id="",
|
|
model="",
|
|
name=None,
|
|
tool_calls=None,
|
|
tool_call_id=None,
|
|
)
|
|
|
|
TEMP_STREAM_RESPONSE_ID = "temp_id"
|
|
TEMP_STREAM_FINISH_REASON = "temp_null"
|
|
TEMP_STREAM_TOOL_CALL_ID = "temp_id"
|
|
chat_completion_response = ChatCompletionResponse(
|
|
id=dummy_message.id if create_message_id else TEMP_STREAM_RESPONSE_ID,
|
|
choices=[],
|
|
created=int(dummy_message.created_at.timestamp()),
|
|
model=chat_completion_request.model,
|
|
usage=UsageStatistics(
|
|
prompt_tokens=prompt_tokens,
|
|
total_tokens=prompt_tokens,
|
|
),
|
|
)
|
|
|
|
log_event(name="llm_request_sent", attributes=chat_completion_request.model_dump())
|
|
|
|
if stream_interface:
|
|
stream_interface.stream_start()
|
|
|
|
completion_tokens = 0
|
|
prev_message_type = None
|
|
message_idx = 0
|
|
try:
|
|
for chunk_idx, chat_completion_chunk in enumerate(
|
|
anthropic_chat_completions_request_stream(
|
|
data=chat_completion_request,
|
|
inner_thoughts_xml_tag=inner_thoughts_xml_tag,
|
|
put_inner_thoughts_in_kwargs=put_inner_thoughts_in_kwargs,
|
|
extended_thinking=extended_thinking,
|
|
max_reasoning_tokens=max_reasoning_tokens,
|
|
provider_name=provider_name,
|
|
betas=betas,
|
|
)
|
|
):
|
|
assert isinstance(chat_completion_chunk, ChatCompletionChunkResponse), type(chat_completion_chunk)
|
|
|
|
if stream_interface:
|
|
if isinstance(stream_interface, AgentChunkStreamingInterface):
|
|
message_type = stream_interface.process_chunk(
|
|
chat_completion_chunk,
|
|
message_id=chat_completion_response.id if create_message_id else chat_completion_chunk.id,
|
|
message_date=(
|
|
timestamp_to_datetime(chat_completion_response.created)
|
|
if create_message_datetime
|
|
else timestamp_to_datetime(chat_completion_chunk.created)
|
|
),
|
|
# if extended_thinking is on, then reasoning_content will be flowing as chunks
|
|
# TODO handle emitting redacted reasoning content (e.g. as concat?)
|
|
expect_reasoning_content=extended_thinking,
|
|
name=name,
|
|
message_index=message_idx,
|
|
)
|
|
if message_type != prev_message_type and message_type is not None:
|
|
message_idx += 1
|
|
prev_message_type = message_type
|
|
elif isinstance(stream_interface, AgentRefreshStreamingInterface):
|
|
stream_interface.process_refresh(chat_completion_response)
|
|
else:
|
|
raise TypeError(stream_interface)
|
|
|
|
if chunk_idx == 0:
|
|
# initialize the choice objects which we will increment with the deltas
|
|
num_choices = len(chat_completion_chunk.choices)
|
|
assert num_choices > 0
|
|
chat_completion_response.choices = [
|
|
Choice(
|
|
finish_reason=TEMP_STREAM_FINISH_REASON, # NOTE: needs to be ovrerwritten
|
|
index=i,
|
|
message=Message(
|
|
role="assistant",
|
|
),
|
|
)
|
|
for i in range(len(chat_completion_chunk.choices))
|
|
]
|
|
|
|
# add the choice delta
|
|
assert len(chat_completion_chunk.choices) == len(chat_completion_response.choices), chat_completion_chunk
|
|
for chunk_choice in chat_completion_chunk.choices:
|
|
if chunk_choice.finish_reason is not None:
|
|
chat_completion_response.choices[chunk_choice.index].finish_reason = chunk_choice.finish_reason
|
|
|
|
if chunk_choice.logprobs is not None:
|
|
chat_completion_response.choices[chunk_choice.index].logprobs = chunk_choice.logprobs
|
|
|
|
accum_message = chat_completion_response.choices[chunk_choice.index].message
|
|
message_delta = chunk_choice.delta
|
|
|
|
if message_delta.content is not None:
|
|
content_delta = message_delta.content
|
|
if accum_message.content is None:
|
|
accum_message.content = content_delta
|
|
else:
|
|
accum_message.content += content_delta
|
|
|
|
# NOTE: for extended_thinking mode
|
|
if extended_thinking and message_delta.reasoning_content is not None:
|
|
reasoning_content_delta = message_delta.reasoning_content
|
|
if accum_message.reasoning_content is None:
|
|
accum_message.reasoning_content = reasoning_content_delta
|
|
else:
|
|
accum_message.reasoning_content += reasoning_content_delta
|
|
|
|
# NOTE: extended_thinking sends a signature
|
|
if extended_thinking and message_delta.reasoning_content_signature is not None:
|
|
reasoning_content_signature_delta = message_delta.reasoning_content_signature
|
|
if accum_message.reasoning_content_signature is None:
|
|
accum_message.reasoning_content_signature = reasoning_content_signature_delta
|
|
else:
|
|
accum_message.reasoning_content_signature += reasoning_content_signature_delta
|
|
|
|
# NOTE: extended_thinking also has the potential for redacted_reasoning_content
|
|
if extended_thinking and message_delta.redacted_reasoning_content is not None:
|
|
redacted_reasoning_content_delta = message_delta.redacted_reasoning_content
|
|
if accum_message.redacted_reasoning_content is None:
|
|
accum_message.redacted_reasoning_content = redacted_reasoning_content_delta
|
|
else:
|
|
accum_message.redacted_reasoning_content += redacted_reasoning_content_delta
|
|
|
|
# TODO(charles) make sure this works for parallel tool calling?
|
|
if message_delta.tool_calls is not None:
|
|
tool_calls_delta = message_delta.tool_calls
|
|
|
|
# If this is the first tool call showing up in a chunk, initialize the list with it
|
|
if accum_message.tool_calls is None:
|
|
accum_message.tool_calls = [
|
|
ToolCall(id=TEMP_STREAM_TOOL_CALL_ID, function=FunctionCall(name="", arguments=""))
|
|
for _ in range(len(tool_calls_delta))
|
|
]
|
|
|
|
# There may be many tool calls in a tool calls delta (e.g. parallel tool calls)
|
|
for tool_call_delta in tool_calls_delta:
|
|
if tool_call_delta.id is not None:
|
|
# TODO assert that we're not overwriting?
|
|
# TODO += instead of =?
|
|
if tool_call_delta.index not in range(len(accum_message.tool_calls)):
|
|
warnings.warn(
|
|
f"Tool call index out of range ({tool_call_delta.index})\ncurrent tool calls: {accum_message.tool_calls}\ncurrent delta: {tool_call_delta}"
|
|
)
|
|
# force index 0
|
|
# accum_message.tool_calls[0].id = tool_call_delta.id
|
|
else:
|
|
accum_message.tool_calls[tool_call_delta.index].id = tool_call_delta.id
|
|
if tool_call_delta.function is not None:
|
|
if tool_call_delta.function.name is not None:
|
|
# TODO assert that we're not overwriting?
|
|
# TODO += instead of =?
|
|
if tool_call_delta.index not in range(len(accum_message.tool_calls)):
|
|
warnings.warn(
|
|
f"Tool call index out of range ({tool_call_delta.index})\ncurrent tool calls: {accum_message.tool_calls}\ncurrent delta: {tool_call_delta}"
|
|
)
|
|
# force index 0
|
|
# accum_message.tool_calls[0].function.name = tool_call_delta.function.name
|
|
else:
|
|
accum_message.tool_calls[tool_call_delta.index].function.name = tool_call_delta.function.name
|
|
if tool_call_delta.function.arguments is not None:
|
|
if tool_call_delta.index not in range(len(accum_message.tool_calls)):
|
|
warnings.warn(
|
|
f"Tool call index out of range ({tool_call_delta.index})\ncurrent tool calls: {accum_message.tool_calls}\ncurrent delta: {tool_call_delta}"
|
|
)
|
|
# force index 0
|
|
# accum_message.tool_calls[0].function.arguments += tool_call_delta.function.arguments
|
|
else:
|
|
accum_message.tool_calls[tool_call_delta.index].function.arguments += tool_call_delta.function.arguments
|
|
|
|
if message_delta.function_call is not None:
|
|
raise NotImplementedError(f"Old function_call style not support with stream=True")
|
|
|
|
# overwrite response fields based on latest chunk
|
|
if not create_message_id:
|
|
chat_completion_response.id = chat_completion_chunk.id
|
|
if not create_message_datetime:
|
|
chat_completion_response.created = chat_completion_chunk.created
|
|
chat_completion_response.model = chat_completion_chunk.model
|
|
chat_completion_response.system_fingerprint = chat_completion_chunk.system_fingerprint
|
|
|
|
# increment chunk counter
|
|
if chat_completion_chunk.output_tokens is not None:
|
|
completion_tokens += chat_completion_chunk.output_tokens
|
|
|
|
except Exception as e:
|
|
if stream_interface:
|
|
stream_interface.stream_end()
|
|
print(f"Parsing ChatCompletion stream failed with error:\n{str(e)}")
|
|
raise e
|
|
finally:
|
|
if stream_interface:
|
|
stream_interface.stream_end()
|
|
|
|
# make sure we didn't leave temp stuff in
|
|
assert all([c.finish_reason != TEMP_STREAM_FINISH_REASON for c in chat_completion_response.choices])
|
|
assert all(
|
|
[
|
|
all([tc.id != TEMP_STREAM_TOOL_CALL_ID for tc in c.message.tool_calls]) if c.message.tool_calls else True
|
|
for c in chat_completion_response.choices
|
|
]
|
|
)
|
|
if not create_message_id:
|
|
assert chat_completion_response.id != dummy_message.id
|
|
|
|
# compute token usage before returning
|
|
# TODO try actually computing the #tokens instead of assuming the chunks is the same
|
|
chat_completion_response.usage.completion_tokens = completion_tokens
|
|
chat_completion_response.usage.total_tokens = prompt_tokens + completion_tokens
|
|
|
|
assert len(chat_completion_response.choices) > 0, chat_completion_response
|
|
|
|
log_event(name="llm_response_received", attributes=chat_completion_response.model_dump())
|
|
|
|
for choice in chat_completion_response.choices:
|
|
if choice.message.content is not None:
|
|
choice.message.content = choice.message.content.replace(f"<{inner_thoughts_xml_tag}>", "")
|
|
choice.message.content = choice.message.content.replace(f"</{inner_thoughts_xml_tag}>", "")
|
|
|
|
return chat_completion_response
|