MemGPT/letta/services/tool_manager.py
Charles Packer 22c7c71c66 feat: initial MCP support (#1229)
Co-authored-by: Matt Zhou <mattzh1314@gmail.com>
2025-03-12 17:33:24 -07:00

225 lines
9.6 KiB
Python

import importlib
import warnings
from typing import List, Optional
from letta.constants import BASE_FUNCTION_RETURN_CHAR_LIMIT, BASE_MEMORY_TOOLS, BASE_TOOLS, MULTI_AGENT_TOOLS
from letta.functions.functions import derive_openai_json_schema, load_function_set
from letta.log import get_logger
from letta.orm.enums import ToolType
# TODO: Remove this once we translate all of these to the ORM
from letta.orm.errors import NoResultFound
from letta.orm.tool import Tool as ToolModel
from letta.schemas.tool import Tool as PydanticTool
from letta.schemas.tool import ToolCreate, ToolUpdate
from letta.schemas.user import User as PydanticUser
from letta.utils import enforce_types, printd
logger = get_logger(__name__)
class ToolManager:
"""Manager class to handle business logic related to Tools."""
BASE_TOOL_NAMES = [
"send_message",
"conversation_search",
"archival_memory_insert",
"archival_memory_search",
]
BASE_MEMORY_TOOL_NAMES = ["core_memory_append", "core_memory_replace"]
def __init__(self):
# Fetching the db_context similarly as in OrganizationManager
from letta.server.db import db_context
self.session_maker = db_context
# TODO: Refactor this across the codebase to use CreateTool instead of passing in a Tool object
@enforce_types
def create_or_update_tool(self, pydantic_tool: PydanticTool, actor: PydanticUser) -> PydanticTool:
"""Create a new tool based on the ToolCreate schema."""
tool = self.get_tool_by_name(tool_name=pydantic_tool.name, actor=actor)
if tool:
# Put to dict and remove fields that should not be reset
update_data = pydantic_tool.model_dump(exclude_unset=True, exclude_none=True)
# If there's anything to update
if update_data:
self.update_tool_by_id(tool.id, ToolUpdate(**update_data), actor)
else:
printd(
f"`create_or_update_tool` was called with user_id={actor.id}, organization_id={actor.organization_id}, name={pydantic_tool.name}, but found existing tool with nothing to update."
)
else:
tool = self.create_tool(pydantic_tool, actor=actor)
return tool
@enforce_types
def create_or_update_mcp_tool(self, tool_create: ToolCreate, actor: PydanticUser) -> PydanticTool:
return self.create_or_update_tool(
PydanticTool(tool_type=ToolType.EXTERNAL_MCP, name=tool_create.json_schema["name"], **tool_create.model_dump()), actor
)
@enforce_types
def create_or_update_composio_tool(self, tool_create: ToolCreate, actor: PydanticUser) -> PydanticTool:
return self.create_or_update_tool(
PydanticTool(tool_type=ToolType.EXTERNAL_COMPOSIO, name=tool_create.json_schema["name"], **tool_create.model_dump()), actor
)
@enforce_types
def create_or_update_langchain_tool(self, tool_create: ToolCreate, actor: PydanticUser) -> PydanticTool:
return self.create_or_update_tool(
PydanticTool(tool_type=ToolType.EXTERNAL_LANGCHAIN, name=tool_create.json_schema["name"], **tool_create.model_dump()), actor
)
@enforce_types
def create_tool(self, pydantic_tool: PydanticTool, actor: PydanticUser) -> PydanticTool:
"""Create a new tool based on the ToolCreate schema."""
with self.session_maker() as session:
# Set the organization id at the ORM layer
pydantic_tool.organization_id = actor.organization_id
# Auto-generate description if not provided
if pydantic_tool.description is None:
pydantic_tool.description = pydantic_tool.json_schema.get("description", None)
tool_data = pydantic_tool.model_dump(to_orm=True)
tool = ToolModel(**tool_data)
tool.create(session, actor=actor) # Re-raise other database-related errors
return tool.to_pydantic()
@enforce_types
def get_tool_by_id(self, tool_id: str, actor: PydanticUser) -> PydanticTool:
"""Fetch a tool by its ID."""
with self.session_maker() as session:
# Retrieve tool by id using the Tool model's read method
tool = ToolModel.read(db_session=session, identifier=tool_id, actor=actor)
# Convert the SQLAlchemy Tool object to PydanticTool
return tool.to_pydantic()
@enforce_types
def get_tool_by_name(self, tool_name: str, actor: PydanticUser) -> Optional[PydanticTool]:
"""Retrieve a tool by its name and a user. We derive the organization from the user, and retrieve that tool."""
try:
with self.session_maker() as session:
tool = ToolModel.read(db_session=session, name=tool_name, actor=actor)
return tool.to_pydantic()
except NoResultFound:
return None
@enforce_types
def list_tools(self, actor: PydanticUser, after: Optional[str] = None, limit: Optional[int] = 50) -> List[PydanticTool]:
"""List all tools with optional pagination."""
with self.session_maker() as session:
tools = ToolModel.list(
db_session=session,
after=after,
limit=limit,
organization_id=actor.organization_id,
)
# Remove any malformed tools
results = []
for tool in tools:
try:
pydantic_tool = tool.to_pydantic()
results.append(pydantic_tool)
except (ValueError, ModuleNotFoundError, AttributeError) as e:
logger.warning(f"Deleting malformed tool with id={tool.id} and name={tool.name}, error was:\n{e}")
logger.warning("Deleted tool: ")
logger.warning(tool.pretty_print_columns())
self.delete_tool_by_id(tool.id, actor=actor)
return results
@enforce_types
def update_tool_by_id(self, tool_id: str, tool_update: ToolUpdate, actor: PydanticUser) -> PydanticTool:
"""Update a tool by its ID with the given ToolUpdate object."""
with self.session_maker() as session:
# Fetch the tool by ID
tool = ToolModel.read(db_session=session, identifier=tool_id, actor=actor)
# Update tool attributes with only the fields that were explicitly set
update_data = tool_update.model_dump(to_orm=True, exclude_none=True)
for key, value in update_data.items():
setattr(tool, key, value)
# If source code is changed and a new json_schema is not provided, we want to auto-refresh the schema
if "source_code" in update_data.keys() and "json_schema" not in update_data.keys():
pydantic_tool = tool.to_pydantic()
new_schema = derive_openai_json_schema(source_code=pydantic_tool.source_code)
tool.json_schema = new_schema
tool.name = new_schema["name"]
# Save the updated tool to the database
return tool.update(db_session=session, actor=actor).to_pydantic()
@enforce_types
def delete_tool_by_id(self, tool_id: str, actor: PydanticUser) -> None:
"""Delete a tool by its ID."""
with self.session_maker() as session:
try:
tool = ToolModel.read(db_session=session, identifier=tool_id, actor=actor)
tool.hard_delete(db_session=session, actor=actor)
except NoResultFound:
raise ValueError(f"Tool with id {tool_id} not found.")
@enforce_types
def upsert_base_tools(self, actor: PydanticUser) -> List[PydanticTool]:
"""Add default tools in base.py and multi_agent.py"""
functions_to_schema = {}
module_names = ["base", "multi_agent"]
for module_name in module_names:
full_module_name = f"letta.functions.function_sets.{module_name}"
try:
module = importlib.import_module(full_module_name)
except Exception as e:
# Handle other general exceptions
raise e
try:
# Load the function set
functions_to_schema.update(load_function_set(module))
except ValueError as e:
err = f"Error loading function set '{module_name}': {e}"
warnings.warn(err)
# create tool in db
tools = []
for name, schema in functions_to_schema.items():
if name in BASE_TOOLS + BASE_MEMORY_TOOLS + MULTI_AGENT_TOOLS:
if name in BASE_TOOLS:
tool_type = ToolType.LETTA_CORE
tags = [tool_type.value]
elif name in BASE_MEMORY_TOOLS:
tool_type = ToolType.LETTA_MEMORY_CORE
tags = [tool_type.value]
elif name in MULTI_AGENT_TOOLS:
tool_type = ToolType.LETTA_MULTI_AGENT_CORE
tags = [tool_type.value]
else:
raise ValueError(
f"Tool name {name} is not in the list of base tool names: {BASE_TOOLS + BASE_MEMORY_TOOLS + MULTI_AGENT_TOOLS}"
)
# create to tool
tools.append(
self.create_or_update_tool(
PydanticTool(
name=name,
tags=tags,
source_type="python",
tool_type=tool_type,
return_char_limit=BASE_FUNCTION_RETURN_CHAR_LIMIT,
),
actor=actor,
)
)
# TODO: Delete any base tools that are stale
return tools