MemGPT/letta/data_sources/connectors.py
mlong93 31d2774193
feat: orm passage migration (#2180)
Co-authored-by: Mindy Long <mindy@letta.com>
2024-12-10 18:09:35 -08:00

244 lines
9.8 KiB
Python

from typing import Dict, Iterator, List, Tuple, Optional
import typer
from letta.agent_store.storage import StorageConnector
from letta.data_sources.connectors_helper import (
assert_all_files_exist_locally,
extract_metadata_from_files,
get_filenames_in_dir,
)
from letta.embeddings import embedding_model
from letta.schemas.file import FileMetadata
from letta.schemas.passage import Passage
from letta.schemas.source import Source
from letta.services.source_manager import SourceManager
from letta.utils import create_uuid_from_string
class DataConnector:
"""
Base class for data connectors that can be extended to generate files and passages from a custom data source.
"""
def find_files(self, source: Source) -> Iterator[FileMetadata]:
"""
Generate file metadata from a data source.
Returns:
files (Iterator[FileMetadata]): Generate file metadata for each file found.
"""
def generate_passages(self, file: FileMetadata, chunk_size: int = 1024) -> Iterator[Tuple[str, Dict]]: # -> Iterator[Passage]:
"""
Generate passage text and metadata from a list of files.
Args:
file (FileMetadata): The document to generate passages from.
chunk_size (int, optional): Chunk size for splitting passages. Defaults to 1024.
Returns:
passages (Iterator[Tuple[str, Dict]]): Generate a tuple of string text and metadata dictionary for each passage.
"""
def load_data(connector: DataConnector, source: Source, passage_store: StorageConnector, source_manager: SourceManager, actor: "User", agent_id: Optional[str] = None):
"""Load data from a connector (generates file and passages) into a specified source_id, associated with a user_id."""
embedding_config = source.embedding_config
# embedding model
embed_model = embedding_model(embedding_config)
# insert passages/file
passages = []
embedding_to_document_name = {}
passage_count = 0
file_count = 0
for file_metadata in connector.find_files(source):
file_count += 1
source_manager.create_file(file_metadata, actor)
# generate passages
for passage_text, passage_metadata in connector.generate_passages(file_metadata, chunk_size=embedding_config.embedding_chunk_size):
# for some reason, llama index parsers sometimes return empty strings
if len(passage_text) == 0:
typer.secho(
f"Warning: Llama index parser returned empty string, skipping insert of passage with metadata '{passage_metadata}' into VectorDB. You can usually ignore this warning.",
fg=typer.colors.YELLOW,
)
continue
# get embedding
try:
embedding = embed_model.get_text_embedding(passage_text)
except Exception as e:
typer.secho(
f"Warning: Failed to get embedding for {passage_text} (error: {str(e)}), skipping insert into VectorDB.",
fg=typer.colors.YELLOW,
)
continue
passage = Passage(
id=create_uuid_from_string(f"{str(source.id)}_{passage_text}"),
text=passage_text,
file_id=file_metadata.id,
agent_id=agent_id,
source_id=source.id,
metadata_=passage_metadata,
organization_id=source.organization_id,
embedding_config=source.embedding_config,
embedding=embedding,
)
hashable_embedding = tuple(passage.embedding)
file_name = file_metadata.file_name
if hashable_embedding in embedding_to_document_name:
typer.secho(
f"Warning: Duplicate embedding found for passage in {file_name} (already exists in {embedding_to_document_name[hashable_embedding]}), skipping insert into VectorDB.",
fg=typer.colors.YELLOW,
)
continue
passages.append(passage)
embedding_to_document_name[hashable_embedding] = file_name
if len(passages) >= 100:
# insert passages into passage store
passage_store.insert_many(passages)
passage_count += len(passages)
passages = []
if len(passages) > 0:
# insert passages into passage store
passage_store.insert_many(passages)
passage_count += len(passages)
return passage_count, file_count
class DirectoryConnector(DataConnector):
def __init__(self, input_files: List[str] = None, input_directory: str = None, recursive: bool = False, extensions: List[str] = None):
"""
Connector for reading text data from a directory of files.
Args:
input_files (List[str], optional): List of file paths to read. Defaults to None.
input_directory (str, optional): Directory to read files from. Defaults to None.
recursive (bool, optional): Whether to read files recursively from the input directory. Defaults to False.
extensions (List[str], optional): List of file extensions to read. Defaults to None.
"""
self.connector_type = "directory"
self.input_files = input_files
self.input_directory = input_directory
self.recursive = recursive
self.extensions = extensions
if self.recursive == True:
assert self.input_directory is not None, "Must provide input directory if recursive is True."
def find_files(self, source: Source) -> Iterator[FileMetadata]:
if self.input_directory is not None:
files = get_filenames_in_dir(
input_dir=self.input_directory,
recursive=self.recursive,
required_exts=[ext.strip() for ext in str(self.extensions).split(",")],
exclude=["*png", "*jpg", "*jpeg"],
)
else:
files = self.input_files
# Check that file paths are valid
assert_all_files_exist_locally(files)
for metadata in extract_metadata_from_files(files):
yield FileMetadata(
source_id=source.id,
file_name=metadata.get("file_name"),
file_path=metadata.get("file_path"),
file_type=metadata.get("file_type"),
file_size=metadata.get("file_size"),
file_creation_date=metadata.get("file_creation_date"),
file_last_modified_date=metadata.get("file_last_modified_date"),
)
def generate_passages(self, file: FileMetadata, chunk_size: int = 1024) -> Iterator[Tuple[str, Dict]]:
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import TokenTextSplitter
parser = TokenTextSplitter(chunk_size=chunk_size)
documents = SimpleDirectoryReader(input_files=[file.file_path]).load_data()
nodes = parser.get_nodes_from_documents(documents)
for node in nodes:
yield node.text, None
"""
The below isn't used anywhere, it isn't tested, and pretty much should be deleted.
- Matt
"""
# class WebConnector(DirectoryConnector):
# def __init__(self, urls: List[str] = None, html_to_text: bool = True):
# self.urls = urls
# self.html_to_text = html_to_text
#
# def generate_files(self) -> Iterator[Tuple[str, Dict]]: # -> Iterator[Document]:
# from llama_index.readers.web import SimpleWebPageReader
#
# files = SimpleWebPageReader(html_to_text=self.html_to_text).load_data(self.urls)
# for document in files:
# yield document.text, {"url": document.id_}
#
#
# class VectorDBConnector(DataConnector):
# # NOTE: this class has not been properly tested, so is unlikely to work
# # TODO: allow loading multiple tables (1:1 mapping between FileMetadata and Table)
#
# def __init__(
# self,
# name: str,
# uri: str,
# table_name: str,
# text_column: str,
# embedding_column: str,
# embedding_dim: int,
# ):
# self.name = name
# self.uri = uri
# self.table_name = table_name
# self.text_column = text_column
# self.embedding_column = embedding_column
# self.embedding_dim = embedding_dim
#
# # connect to db table
# from sqlalchemy import create_engine
#
# self.engine = create_engine(uri)
#
# def generate_files(self) -> Iterator[Tuple[str, Dict]]: # -> Iterator[Document]:
# yield self.table_name, None
#
# def generate_passages(self, file_text: str, file: FileMetadata, chunk_size: int = 1024) -> Iterator[Tuple[str, Dict]]: # -> Iterator[Passage]:
# from pgvector.sqlalchemy import Vector
# from sqlalchemy import Inspector, MetaData, Table, select
#
# metadata = MetaData()
# # Create an inspector to inspect the database
# inspector = Inspector.from_engine(self.engine)
# table_names = inspector.get_table_names()
# assert self.table_name in table_names, f"Table {self.table_name} not found in database: tables that exist {table_names}."
#
# table = Table(self.table_name, metadata, autoload_with=self.engine)
#
# # Prepare a select statement
# select_statement = select(table.c[self.text_column], table.c[self.embedding_column].cast(Vector(self.embedding_dim)))
#
# # Execute the query and fetch the results
# # TODO: paginate results
# with self.engine.connect() as connection:
# result = connection.execute(select_statement).fetchall()
#
# for text, embedding in result:
# # assume that embeddings are the same model as in config
# # TODO: don't re-compute embedding
# yield text, {"embedding": embedding}