MemGPT/letta/functions/helpers.py

694 lines
27 KiB
Python

import asyncio
import json
import logging
import threading
from random import uniform
from typing import Any, Dict, List, Optional, Type, Union
import humps
from composio.constants import DEFAULT_ENTITY_ID
from pydantic import BaseModel, Field, create_model
from letta.constants import COMPOSIO_ENTITY_ENV_VAR_KEY, DEFAULT_MESSAGE_TOOL, DEFAULT_MESSAGE_TOOL_KWARG
from letta.functions.interface import MultiAgentMessagingInterface
from letta.orm.errors import NoResultFound
from letta.schemas.enums import MessageRole
from letta.schemas.letta_message import AssistantMessage
from letta.schemas.letta_response import LettaResponse
from letta.schemas.message import Message, MessageCreate
from letta.schemas.user import User
from letta.server.rest_api.utils import get_letta_server
from letta.settings import settings
# TODO: This is kind of hacky, as this is used to search up the action later on composio's side
# TODO: So be very careful changing/removing these pair of functions
def generate_func_name_from_composio_action(action_name: str) -> str:
"""
Generates the composio function name from the composio action.
Args:
action_name: The composio action name
Returns:
function name
"""
return action_name.lower()
def generate_composio_action_from_func_name(func_name: str) -> str:
"""
Generates the composio action from the composio function name.
Args:
func_name: The composio function name
Returns:
composio action name
"""
return func_name.upper()
# TODO needed?
def generate_mcp_tool_wrapper(mcp_tool_name: str) -> tuple[str, str]:
wrapper_function_str = f"""\
def {mcp_tool_name}(**kwargs):
raise RuntimeError("Something went wrong - we should never be using the persisted source code for MCP. Please reach out to Letta team")
"""
# Compile safety check
assert_code_gen_compilable(wrapper_function_str.strip())
return mcp_tool_name, wrapper_function_str.strip()
def generate_composio_tool_wrapper(action_name: str) -> tuple[str, str]:
# Generate func name
func_name = generate_func_name_from_composio_action(action_name)
wrapper_function_str = f"""\
def {func_name}(**kwargs):
raise RuntimeError("Something went wrong - we should never be using the persisted source code for Composio. Please reach out to Letta team")
"""
# Compile safety check
assert_code_gen_compilable(wrapper_function_str.strip())
return func_name, wrapper_function_str.strip()
def execute_composio_action(
action_name: str, args: dict, api_key: Optional[str] = None, entity_id: Optional[str] = None
) -> tuple[str, str]:
import os
from composio.exceptions import (
ApiKeyNotProvidedError,
ComposioSDKError,
ConnectedAccountNotFoundError,
EnumMetadataNotFound,
EnumStringNotFound,
)
from composio_langchain import ComposioToolSet
entity_id = entity_id or os.getenv(COMPOSIO_ENTITY_ENV_VAR_KEY, DEFAULT_ENTITY_ID)
try:
composio_toolset = ComposioToolSet(api_key=api_key, entity_id=entity_id, lock=False)
response = composio_toolset.execute_action(action=action_name, params=args)
except ApiKeyNotProvidedError:
raise RuntimeError(
f"Composio API key is missing for action '{action_name}'. "
"Please set the sandbox environment variables either through the ADE or the API."
)
except ConnectedAccountNotFoundError:
raise RuntimeError(f"No connected account was found for action '{action_name}'. " "Please link an account and try again.")
except EnumStringNotFound as e:
raise RuntimeError(f"Invalid value provided for action '{action_name}': " + str(e) + ". Please check the action parameters.")
except EnumMetadataNotFound as e:
raise RuntimeError(f"Invalid value provided for action '{action_name}': " + str(e) + ". Please check the action parameters.")
except ComposioSDKError as e:
raise RuntimeError(f"An unexpected error occurred in Composio SDK while executing action '{action_name}': " + str(e))
if response["error"]:
raise RuntimeError(f"Error while executing action '{action_name}': " + str(response["error"]))
return response["data"]
def generate_langchain_tool_wrapper(
tool: "LangChainBaseTool", additional_imports_module_attr_map: dict[str, str] = None
) -> tuple[str, str]:
tool_name = tool.__class__.__name__
import_statement = f"from langchain_community.tools import {tool_name}"
extra_module_imports = generate_import_code(additional_imports_module_attr_map)
# Safety check that user has passed in all required imports:
assert_all_classes_are_imported(tool, additional_imports_module_attr_map)
tool_instantiation = f"tool = {generate_imported_tool_instantiation_call_str(tool)}"
run_call = f"return tool._run(**kwargs)"
func_name = humps.decamelize(tool_name)
# Combine all parts into the wrapper function
wrapper_function_str = f"""
def {func_name}(**kwargs):
import importlib
{import_statement}
{extra_module_imports}
{tool_instantiation}
{run_call}
"""
# Compile safety check
assert_code_gen_compilable(wrapper_function_str)
return func_name, wrapper_function_str
def assert_code_gen_compilable(code_str):
try:
compile(code_str, "<string>", "exec")
except SyntaxError as e:
print(f"Syntax error in code: {e}")
def assert_all_classes_are_imported(tool: Union["LangChainBaseTool"], additional_imports_module_attr_map: dict[str, str]) -> None:
# Safety check that user has passed in all required imports:
tool_name = tool.__class__.__name__
current_class_imports = {tool_name}
if additional_imports_module_attr_map:
current_class_imports.update(set(additional_imports_module_attr_map.values()))
required_class_imports = set(find_required_class_names_for_import(tool))
if not current_class_imports.issuperset(required_class_imports):
err_msg = f"[ERROR] You are missing module_attr pairs in `additional_imports_module_attr_map`. Currently, you have imports for {current_class_imports}, but the required classes for import are {required_class_imports}"
print(err_msg)
raise RuntimeError(err_msg)
def find_required_class_names_for_import(obj: Union["LangChainBaseTool", BaseModel]) -> list[str]:
"""
Finds all the class names for required imports when instantiating the `obj`.
NOTE: This does not return the full import path, only the class name.
We accomplish this by running BFS and deep searching all the BaseModel objects in the obj parameters.
"""
class_names = {obj.__class__.__name__}
queue = [obj]
while queue:
# Get the current object we are inspecting
curr_obj = queue.pop()
# Collect all possible candidates for BaseModel objects
candidates = []
if is_base_model(curr_obj):
# If it is a base model, we get all the values of the object parameters
# i.e., if obj('b' = <class A>), we would want to inspect <class A>
fields = dict(curr_obj)
# Generate code for each field, skipping empty or None values
candidates = list(fields.values())
elif isinstance(curr_obj, dict):
# If it is a dictionary, we get all the values
# i.e., if obj = {'a': 3, 'b': <class A>}, we would want to inspect <class A>
candidates = list(curr_obj.values())
elif isinstance(curr_obj, list):
# If it is a list, we inspect all the items in the list
# i.e., if obj = ['a', 3, None, <class A>], we would want to inspect <class A>
candidates = curr_obj
# Filter out all candidates that are not BaseModels
# In the list example above, ['a', 3, None, <class A>], we want to filter out 'a', 3, and None
candidates = filter(lambda x: is_base_model(x), candidates)
# Classic BFS here
for c in candidates:
c_name = c.__class__.__name__
if c_name not in class_names:
class_names.add(c_name)
queue.append(c)
return list(class_names)
def generate_imported_tool_instantiation_call_str(obj: Any) -> Optional[str]:
if isinstance(obj, (int, float, str, bool, type(None))):
# This is the base case
# If it is a basic Python type, we trivially return the string version of that value
# Handle basic types
return repr(obj)
elif is_base_model(obj):
# Otherwise, if it is a BaseModel
# We want to pull out all the parameters, and reformat them into strings
# e.g. {arg}={value}
# The reason why this is recursive, is because the value can be another BaseModel that we need to stringify
model_name = obj.__class__.__name__
fields = obj.dict()
# Generate code for each field, skipping empty or None values
field_assignments = []
for arg, value in fields.items():
python_string = generate_imported_tool_instantiation_call_str(value)
if python_string:
field_assignments.append(f"{arg}={python_string}")
assignments = ", ".join(field_assignments)
return f"{model_name}({assignments})"
elif isinstance(obj, dict):
# Inspect each of the items in the dict and stringify them
# This is important because the dictionary may contain other BaseModels
dict_items = []
for k, v in obj.items():
python_string = generate_imported_tool_instantiation_call_str(v)
if python_string:
dict_items.append(f"{repr(k)}: {python_string}")
joined_items = ", ".join(dict_items)
return f"{{{joined_items}}}"
elif isinstance(obj, list):
# Inspect each of the items in the list and stringify them
# This is important because the list may contain other BaseModels
list_items = [generate_imported_tool_instantiation_call_str(v) for v in obj]
filtered_list_items = list(filter(None, list_items))
list_items = ", ".join(filtered_list_items)
return f"[{list_items}]"
else:
# Otherwise, if it is none of the above, that usually means it is a custom Python class that is NOT a BaseModel
# Thus, we cannot get enough information about it to stringify it
# This may cause issues, but we are making the assumption that any of these custom Python types are handled correctly by the parent library, such as LangChain
# An example would be that WikipediaAPIWrapper has an argument that is a wikipedia (pip install wikipedia) object
# We cannot stringify this easily, but WikipediaAPIWrapper handles the setting of this parameter internally
# This assumption seems fair to me, since usually they are external imports, and LangChain should be bundling those as module-level imports within the tool
# We throw a warning here anyway and provide the class name
print(
f"[WARNING] Skipping parsing unknown class {obj.__class__.__name__} (does not inherit from the Pydantic BaseModel and is not a basic Python type)"
)
if obj.__class__.__name__ == "function":
import inspect
print(inspect.getsource(obj))
return None
def is_base_model(obj: Any):
return isinstance(obj, BaseModel)
def generate_import_code(module_attr_map: Optional[dict]):
if not module_attr_map:
return ""
code_lines = []
for module, attr in module_attr_map.items():
module_name = module.split(".")[-1]
code_lines.append(f"# Load the module\n {module_name} = importlib.import_module('{module}')")
code_lines.append(f" # Access the {attr} from the module")
code_lines.append(f" {attr} = getattr({module_name}, '{attr}')")
return "\n".join(code_lines)
def parse_letta_response_for_assistant_message(
target_agent_id: str,
letta_response: LettaResponse,
) -> Optional[str]:
messages = []
for m in letta_response.messages:
if isinstance(m, AssistantMessage):
messages.append(m.content)
if messages:
messages_str = "\n".join(messages)
return f"{target_agent_id} said: '{messages_str}'"
else:
return f"No response from {target_agent_id}"
async def async_execute_send_message_to_agent(
sender_agent: "Agent",
messages: List[MessageCreate],
other_agent_id: str,
log_prefix: str,
) -> Optional[str]:
"""
Async helper to:
1) validate the target agent exists & is in the same org,
2) send a message via async_send_message_with_retries.
"""
server = get_letta_server()
# 1. Validate target agent
try:
server.agent_manager.get_agent_by_id(agent_id=other_agent_id, actor=sender_agent.user)
except NoResultFound:
raise ValueError(f"Target agent {other_agent_id} either does not exist or is not in org " f"({sender_agent.user.organization_id}).")
# 2. Use your async retry logic
return await async_send_message_with_retries(
server=server,
sender_agent=sender_agent,
target_agent_id=other_agent_id,
messages=messages,
max_retries=settings.multi_agent_send_message_max_retries,
timeout=settings.multi_agent_send_message_timeout,
logging_prefix=log_prefix,
)
def execute_send_message_to_agent(
sender_agent: "Agent",
messages: List[MessageCreate],
other_agent_id: str,
log_prefix: str,
) -> Optional[str]:
"""
Synchronous wrapper that calls `async_execute_send_message_to_agent` using asyncio.run.
This function must be called from a synchronous context (i.e., no running event loop).
"""
return asyncio.run(async_execute_send_message_to_agent(sender_agent, messages, other_agent_id, log_prefix))
async def send_message_to_agent_no_stream(
server: "SyncServer",
agent_id: str,
actor: User,
messages: List[MessageCreate],
metadata: Optional[dict] = None,
) -> LettaResponse:
"""
A simpler helper to send messages to a single agent WITHOUT streaming.
Returns a LettaResponse containing the final messages.
"""
interface = MultiAgentMessagingInterface()
if metadata:
interface.metadata = metadata
# Offload the synchronous `send_messages` call
usage_stats = await asyncio.to_thread(
server.send_messages,
actor=actor,
agent_id=agent_id,
input_messages=messages,
interface=interface,
metadata=metadata,
)
final_messages = interface.get_captured_send_messages()
return LettaResponse(messages=final_messages, usage=usage_stats)
async def async_send_message_with_retries(
server: "SyncServer",
sender_agent: "Agent",
target_agent_id: str,
messages: List[MessageCreate],
max_retries: int,
timeout: int,
logging_prefix: Optional[str] = None,
) -> str:
logging_prefix = logging_prefix or "[async_send_message_with_retries]"
for attempt in range(1, max_retries + 1):
try:
response = await asyncio.wait_for(
send_message_to_agent_no_stream(
server=server,
agent_id=target_agent_id,
actor=sender_agent.user,
messages=messages,
),
timeout=timeout,
)
# Then parse out the assistant message
assistant_message = parse_letta_response_for_assistant_message(target_agent_id, response)
if assistant_message:
sender_agent.logger.info(f"{logging_prefix} - {assistant_message}")
return assistant_message
else:
msg = f"(No response from agent {target_agent_id})"
sender_agent.logger.info(f"{logging_prefix} - {msg}")
return msg
except asyncio.TimeoutError:
error_msg = f"(Timeout on attempt {attempt}/{max_retries} for agent {target_agent_id})"
sender_agent.logger.warning(f"{logging_prefix} - {error_msg}")
except Exception as e:
error_msg = f"(Error on attempt {attempt}/{max_retries} for agent {target_agent_id}: {e})"
sender_agent.logger.warning(f"{logging_prefix} - {error_msg}")
# Exponential backoff before retrying
if attempt < max_retries:
backoff = uniform(0.5, 2) * (2**attempt)
sender_agent.logger.warning(f"{logging_prefix} - Retrying the agent-to-agent send_message...sleeping for {backoff}")
await asyncio.sleep(backoff)
else:
sender_agent.logger.error(f"{logging_prefix} - Fatal error: {error_msg}")
raise Exception(error_msg)
def fire_and_forget_send_to_agent(
sender_agent: "Agent",
messages: List[MessageCreate],
other_agent_id: str,
log_prefix: str,
use_retries: bool = False,
) -> None:
"""
Fire-and-forget send of messages to a specific agent.
Returns immediately in the calling thread, never blocks.
Args:
sender_agent (Agent): The sender agent object.
server: The Letta server instance
messages (List[MessageCreate]): The messages to send.
other_agent_id (str): The ID of the target agent.
log_prefix (str): Prefix for logging.
use_retries (bool): If True, uses async_send_message_with_retries;
if False, calls server.send_message_to_agent directly.
"""
server = get_letta_server()
# 1) Validate the target agent (raises ValueError if not in same org)
try:
server.agent_manager.get_agent_by_id(agent_id=other_agent_id, actor=sender_agent.user)
except NoResultFound:
raise ValueError(
f"The passed-in agent_id {other_agent_id} either does not exist, "
f"or does not belong to the same org ({sender_agent.user.organization_id})."
)
# 2) Define the async coroutine to run
async def background_task():
try:
if use_retries:
result = await async_send_message_with_retries(
server=server,
sender_agent=sender_agent,
target_agent_id=other_agent_id,
messages=messages,
max_retries=settings.multi_agent_send_message_max_retries,
timeout=settings.multi_agent_send_message_timeout,
logging_prefix=log_prefix,
)
sender_agent.logger.info(f"{log_prefix} fire-and-forget success with retries: {result}")
else:
# Direct call to server.send_message_to_agent, no retry logic
await server.send_message_to_agent(
agent_id=other_agent_id,
actor=sender_agent.user,
input_messages=messages,
stream_steps=False,
stream_tokens=False,
use_assistant_message=True,
assistant_message_tool_name=DEFAULT_MESSAGE_TOOL,
assistant_message_tool_kwarg=DEFAULT_MESSAGE_TOOL_KWARG,
)
sender_agent.logger.info(f"{log_prefix} fire-and-forget success (no retries).")
except Exception as e:
sender_agent.logger.error(f"{log_prefix} fire-and-forget send failed: {e}")
# 3) Helper to run the coroutine in a brand-new event loop in a separate thread
def run_in_background_thread(coro):
def runner():
loop = asyncio.new_event_loop()
try:
asyncio.set_event_loop(loop)
loop.run_until_complete(coro)
finally:
loop.close()
thread = threading.Thread(target=runner, daemon=True)
thread.start()
# 4) Try to schedule the coroutine in an existing loop, else spawn a thread
try:
loop = asyncio.get_running_loop()
# If we get here, a loop is running; schedule the coroutine in background
loop.create_task(background_task())
except RuntimeError:
# Means no event loop is running in this thread
run_in_background_thread(background_task())
async def _send_message_to_agents_matching_tags_async(
sender_agent: "Agent", server: "SyncServer", messages: List[MessageCreate], matching_agents: List["AgentState"]
) -> List[str]:
async def _send_single(agent_state):
return await async_send_message_with_retries(
server=server,
sender_agent=sender_agent,
target_agent_id=agent_state.id,
messages=messages,
max_retries=3,
timeout=settings.multi_agent_send_message_timeout,
)
tasks = [asyncio.create_task(_send_single(agent_state)) for agent_state in matching_agents]
results = await asyncio.gather(*tasks, return_exceptions=True)
final = []
for r in results:
if isinstance(r, Exception):
final.append(str(r))
else:
final.append(r)
return final
async def _send_message_to_all_agents_in_group_async(sender_agent: "Agent", message: str) -> List[str]:
server = get_letta_server()
augmented_message = (
f"[Incoming message from agent with ID '{sender_agent.agent_state.id}' - to reply to this message, "
f"make sure to use the 'send_message' at the end, and the system will notify the sender of your response] "
f"{message}"
)
worker_agents_ids = sender_agent.agent_state.multi_agent_group.agent_ids
worker_agents = [server.agent_manager.get_agent_by_id(agent_id=agent_id, actor=sender_agent.user) for agent_id in worker_agents_ids]
# Create a system message
messages = [MessageCreate(role=MessageRole.system, content=augmented_message, name=sender_agent.agent_state.name)]
# Possibly limit concurrency to avoid meltdown:
sem = asyncio.Semaphore(settings.multi_agent_concurrent_sends)
async def _send_single(agent_state):
async with sem:
return await async_send_message_with_retries(
server=server,
sender_agent=sender_agent,
target_agent_id=agent_state.id,
messages=messages,
max_retries=3,
timeout=settings.multi_agent_send_message_timeout,
)
tasks = [asyncio.create_task(_send_single(agent_state)) for agent_state in worker_agents]
results = await asyncio.gather(*tasks, return_exceptions=True)
final = []
for r in results:
if isinstance(r, Exception):
final.append(str(r))
else:
final.append(r)
return final
def generate_model_from_args_json_schema(schema: Dict[str, Any]) -> Type[BaseModel]:
"""Creates a Pydantic model from a JSON schema.
Args:
schema: The JSON schema dictionary
Returns:
A Pydantic model class
"""
# First create any nested models from $defs in reverse order to handle dependencies
nested_models = {}
if "$defs" in schema:
for name, model_schema in reversed(list(schema.get("$defs", {}).items())):
nested_models[name] = _create_model_from_schema(name, model_schema, nested_models)
# Create and return the main model
return _create_model_from_schema(schema.get("title", "DynamicModel"), schema, nested_models)
def _create_model_from_schema(name: str, model_schema: Dict[str, Any], nested_models: Dict[str, Type[BaseModel]] = None) -> Type[BaseModel]:
fields = {}
for field_name, field_schema in model_schema["properties"].items():
field_type = _get_field_type(field_schema, nested_models)
required = field_name in model_schema.get("required", [])
description = field_schema.get("description", "") # Get description or empty string
fields[field_name] = (field_type, Field(..., description=description) if required else Field(None, description=description))
return create_model(name, **fields)
def _get_field_type(field_schema: Dict[str, Any], nested_models: Dict[str, Type[BaseModel]] = None) -> Any:
"""Helper to convert JSON schema types to Python types."""
if field_schema.get("type") == "string":
return str
elif field_schema.get("type") == "integer":
return int
elif field_schema.get("type") == "number":
return float
elif field_schema.get("type") == "boolean":
return bool
elif field_schema.get("type") == "array":
item_type = field_schema["items"].get("$ref", "").split("/")[-1]
if item_type and nested_models and item_type in nested_models:
return List[nested_models[item_type]]
return List[_get_field_type(field_schema["items"], nested_models)]
elif field_schema.get("type") == "object":
if "$ref" in field_schema:
ref_type = field_schema["$ref"].split("/")[-1]
if nested_models and ref_type in nested_models:
return nested_models[ref_type]
elif "additionalProperties" in field_schema:
# TODO: This is totally GPT generated and I'm not sure it works
# TODO: This is done to quickly patch some tests, we should nuke this whole pathway asap
ap = field_schema["additionalProperties"]
if ap is True:
return dict
elif ap is False:
raise ValueError("additionalProperties=false is not supported.")
else:
# Try resolving nested type
nested_type = _get_field_type(ap, nested_models)
# If nested_type is Any, fall back to `dict`, or raise, depending on how strict you want to be
if nested_type == Any:
return dict
return Dict[str, nested_type]
return dict
elif field_schema.get("$ref") is not None:
ref_type = field_schema["$ref"].split("/")[-1]
if nested_models and ref_type in nested_models:
return nested_models[ref_type]
else:
raise ValueError(f"Reference {ref_type} not found in nested models")
elif field_schema.get("anyOf") is not None:
types = []
has_null = False
for type_option in field_schema["anyOf"]:
if type_option.get("type") == "null":
has_null = True
else:
types.append(_get_field_type(type_option, nested_models))
# If we have exactly one type and null, make it Optional
if has_null and len(types) == 1:
return Optional[types[0]]
# Otherwise make it a Union of all types
else:
return Union[tuple(types)]
raise ValueError(f"Unable to convert pydantic field schema to type: {field_schema}")
def extract_send_message_from_steps_messages(
steps_messages: List[List[Message]],
agent_send_message_tool_name: str = DEFAULT_MESSAGE_TOOL,
agent_send_message_tool_kwarg: str = DEFAULT_MESSAGE_TOOL_KWARG,
logger: Optional[logging.Logger] = None,
) -> List[str]:
extracted_messages = []
for step in steps_messages:
for message in step:
if message.tool_calls:
for tool_call in message.tool_calls:
if tool_call.function.name == agent_send_message_tool_name:
try:
# Parse arguments to extract the "message" field
arguments = json.loads(tool_call.function.arguments)
if agent_send_message_tool_kwarg in arguments:
extracted_messages.append(arguments[agent_send_message_tool_kwarg])
except json.JSONDecodeError:
logger.error(f"Failed to parse arguments for tool call: {tool_call.id}")
return extracted_messages