MemGPT/letta/groups/supervisor_multi_agent.py

117 lines
4.4 KiB
Python

from typing import List, Optional
from letta.agent import Agent, AgentState
from letta.constants import DEFAULT_MESSAGE_TOOL
from letta.functions.function_sets.multi_agent import send_message_to_all_agents_in_group
from letta.functions.functions import parse_source_code
from letta.functions.schema_generator import generate_schema
from letta.interface import AgentInterface
from letta.orm import User
from letta.orm.enums import ToolType
from letta.schemas.letta_message_content import TextContent
from letta.schemas.message import MessageCreate
from letta.schemas.tool import Tool
from letta.schemas.tool_rule import ChildToolRule, InitToolRule, TerminalToolRule
from letta.schemas.usage import LettaUsageStatistics
from letta.services.agent_manager import AgentManager
from letta.services.tool_manager import ToolManager
class SupervisorMultiAgent(Agent):
def __init__(
self,
interface: AgentInterface,
agent_state: AgentState,
user: User,
# custom
group_id: str = "",
agent_ids: List[str] = [],
description: str = "",
):
super().__init__(interface, agent_state, user)
self.group_id = group_id
self.agent_ids = agent_ids
self.description = description
self.agent_manager = AgentManager()
self.tool_manager = ToolManager()
def step(
self,
input_messages: List[MessageCreate],
chaining: bool = True,
max_chaining_steps: Optional[int] = None,
put_inner_thoughts_first: bool = True,
assistant_message_tool_name: str = DEFAULT_MESSAGE_TOOL,
**kwargs,
) -> LettaUsageStatistics:
# Load settings
token_streaming = self.interface.streaming_mode if hasattr(self.interface, "streaming_mode") else False
metadata = self.interface.metadata if hasattr(self.interface, "metadata") else None
# Prepare supervisor agent
if self.tool_manager.get_tool_by_name(tool_name="send_message_to_all_agents_in_group", actor=self.user) is None:
multi_agent_tool = Tool(
name=send_message_to_all_agents_in_group.__name__,
description="",
source_type="python",
tags=[],
source_code=parse_source_code(send_message_to_all_agents_in_group),
json_schema=generate_schema(send_message_to_all_agents_in_group, None),
)
multi_agent_tool.tool_type = ToolType.LETTA_MULTI_AGENT_CORE
multi_agent_tool = self.tool_manager.create_or_update_tool(
pydantic_tool=multi_agent_tool,
actor=self.user,
)
self.agent_state = self.agent_manager.attach_tool(agent_id=self.agent_state.id, tool_id=multi_agent_tool.id, actor=self.user)
old_tool_rules = self.agent_state.tool_rules
self.agent_state.tool_rules = [
InitToolRule(
tool_name="send_message_to_all_agents_in_group",
),
TerminalToolRule(
tool_name=assistant_message_tool_name,
),
ChildToolRule(
tool_name="send_message_to_all_agents_in_group",
children=[assistant_message_tool_name],
),
]
# Prepare new messages
new_messages = []
for message in input_messages:
if isinstance(message.content, str):
message.content = [TextContent(text=message.content)]
message.group_id = self.group_id
new_messages.append(message)
try:
# Load supervisor agent
supervisor_agent = Agent(
agent_state=self.agent_state,
interface=self.interface,
user=self.user,
)
# Perform supervisor step
usage_stats = supervisor_agent.step(
input_messages=new_messages,
chaining=chaining,
max_chaining_steps=max_chaining_steps,
stream=token_streaming,
skip_verify=True,
metadata=metadata,
put_inner_thoughts_first=put_inner_thoughts_first,
)
except Exception as e:
raise e
finally:
self.interface.step_yield()
self.agent_state.tool_rules = old_tool_rules
self.interface.step_complete()
return usage_stats