MemGPT/letta/helpers/converters.py

403 lines
13 KiB
Python

import base64
from typing import Any, Dict, List, Optional, Union
import numpy as np
from anthropic.types.beta.messages import BetaMessageBatch, BetaMessageBatchIndividualResponse
from openai.types.chat.chat_completion_message_tool_call import ChatCompletionMessageToolCall as OpenAIToolCall
from openai.types.chat.chat_completion_message_tool_call import Function as OpenAIFunction
from sqlalchemy import Dialect
from letta.schemas.agent import AgentStepState
from letta.schemas.embedding_config import EmbeddingConfig
from letta.schemas.enums import ProviderType, ToolRuleType
from letta.schemas.letta_message_content import (
MessageContent,
MessageContentType,
OmittedReasoningContent,
ReasoningContent,
RedactedReasoningContent,
TextContent,
ToolCallContent,
ToolReturnContent,
)
from letta.schemas.llm_config import LLMConfig
from letta.schemas.message import ToolReturn
from letta.schemas.response_format import (
JsonObjectResponseFormat,
JsonSchemaResponseFormat,
ResponseFormatType,
ResponseFormatUnion,
TextResponseFormat,
)
from letta.schemas.tool_rule import (
ChildToolRule,
ConditionalToolRule,
ContinueToolRule,
InitToolRule,
MaxCountPerStepToolRule,
ParentToolRule,
TerminalToolRule,
ToolRule,
)
# --------------------------
# LLMConfig Serialization
# --------------------------
def serialize_llm_config(config: Union[Optional[LLMConfig], Dict]) -> Optional[Dict]:
"""Convert an LLMConfig object into a JSON-serializable dictionary."""
if config and isinstance(config, LLMConfig):
return config.model_dump(mode="json")
return config
def deserialize_llm_config(data: Optional[Dict]) -> Optional[LLMConfig]:
"""Convert a dictionary back into an LLMConfig object."""
return LLMConfig(**data) if data else None
# --------------------------
# EmbeddingConfig Serialization
# --------------------------
def serialize_embedding_config(config: Union[Optional[EmbeddingConfig], Dict]) -> Optional[Dict]:
"""Convert an EmbeddingConfig object into a JSON-serializable dictionary."""
if config and isinstance(config, EmbeddingConfig):
return config.model_dump(mode="json")
return config
def deserialize_embedding_config(data: Optional[Dict]) -> Optional[EmbeddingConfig]:
"""Convert a dictionary back into an EmbeddingConfig object."""
return EmbeddingConfig(**data) if data else None
# --------------------------
# ToolRule Serialization
# --------------------------
def serialize_tool_rules(tool_rules: Optional[List[ToolRule]]) -> List[Dict[str, Any]]:
"""Convert a list of ToolRules into a JSON-serializable format."""
if not tool_rules:
return []
data = [
{**rule.model_dump(mode="json"), "type": rule.type.value} for rule in tool_rules
] # Convert Enum to string for JSON compatibility
# Validate ToolRule structure
for rule_data in data:
if rule_data["type"] == ToolRuleType.constrain_child_tools.value and "children" not in rule_data:
raise ValueError(f"Invalid ToolRule serialization: 'children' field missing for rule {rule_data}")
return data
def deserialize_tool_rules(data: Optional[List[Dict]]) -> List[ToolRule]:
"""Convert a list of dictionaries back into ToolRule objects."""
if not data:
return []
return [deserialize_tool_rule(rule_data) for rule_data in data]
def deserialize_tool_rule(
data: Dict,
) -> ToolRule:
"""Deserialize a dictionary to the appropriate ToolRule subclass based on 'type'."""
rule_type = ToolRuleType(data.get("type"))
if rule_type == ToolRuleType.run_first:
data["type"] = ToolRuleType.run_first
return InitToolRule(**data)
elif rule_type == ToolRuleType.exit_loop:
data["type"] = ToolRuleType.exit_loop
return TerminalToolRule(**data)
elif rule_type == ToolRuleType.constrain_child_tools:
data["type"] = ToolRuleType.constrain_child_tools
return ChildToolRule(**data)
elif rule_type == ToolRuleType.conditional:
return ConditionalToolRule(**data)
elif rule_type == ToolRuleType.continue_loop:
return ContinueToolRule(**data)
elif rule_type == ToolRuleType.max_count_per_step:
return MaxCountPerStepToolRule(**data)
elif rule_type == ToolRuleType.parent_last_tool:
return ParentToolRule(**data)
raise ValueError(f"Unknown ToolRule type: {rule_type}")
# --------------------------
# ToolCall Serialization
# --------------------------
def serialize_tool_calls(tool_calls: Optional[List[Union[OpenAIToolCall, dict]]]) -> List[Dict]:
"""Convert a list of OpenAI ToolCall objects into JSON-serializable format."""
if not tool_calls:
return []
serialized_calls = []
for call in tool_calls:
if isinstance(call, OpenAIToolCall):
serialized_calls.append(call.model_dump(mode="json"))
elif isinstance(call, dict):
serialized_calls.append(call) # Already a dictionary, leave it as-is
else:
raise TypeError(f"Unexpected tool call type: {type(call)}")
return serialized_calls
def deserialize_tool_calls(data: Optional[List[Dict]]) -> List[OpenAIToolCall]:
"""Convert a JSON list back into OpenAIToolCall objects."""
if not data:
return []
calls = []
for item in data:
func_data = item.pop("function", None)
tool_call_function = OpenAIFunction(**func_data)
calls.append(OpenAIToolCall(function=tool_call_function, **item))
return calls
# --------------------------
# ToolReturn Serialization
# --------------------------
def serialize_tool_returns(tool_returns: Optional[List[Union[ToolReturn, dict]]]) -> List[Dict]:
"""Convert a list of ToolReturn objects into JSON-serializable format."""
if not tool_returns:
return []
serialized_tool_returns = []
for tool_return in tool_returns:
if isinstance(tool_return, ToolReturn):
serialized_tool_returns.append(tool_return.model_dump(mode="json"))
elif isinstance(tool_return, dict):
serialized_tool_returns.append(tool_return) # Already a dictionary, leave it as-is
else:
raise TypeError(f"Unexpected tool return type: {type(tool_return)}")
return serialized_tool_returns
def deserialize_tool_returns(data: Optional[List[Dict]]) -> List[ToolReturn]:
"""Convert a JSON list back into ToolReturn objects."""
if not data:
return []
tool_returns = []
for item in data:
tool_return = ToolReturn(**item)
tool_returns.append(tool_return)
return tool_returns
# ----------------------------
# MessageContent Serialization
# ----------------------------
def serialize_message_content(message_content: Optional[List[Union[MessageContent, dict]]]) -> List[Dict]:
"""Convert a list of MessageContent objects into JSON-serializable format."""
if not message_content:
return []
serialized_message_content = []
for content in message_content:
if isinstance(content, MessageContent):
serialized_message_content.append(content.model_dump(mode="json"))
elif isinstance(content, dict):
serialized_message_content.append(content) # Already a dictionary, leave it as-is
else:
raise TypeError(f"Unexpected message content type: {type(content)}")
return serialized_message_content
def deserialize_message_content(data: Optional[List[Dict]]) -> List[MessageContent]:
"""Convert a JSON list back into MessageContent objects."""
if not data:
return []
message_content = []
for item in data:
if not item:
continue
content_type = item.get("type")
if content_type == MessageContentType.text:
content = TextContent(**item)
elif content_type == MessageContentType.tool_call:
content = ToolCallContent(**item)
elif content_type == MessageContentType.tool_return:
content = ToolReturnContent(**item)
elif content_type == MessageContentType.reasoning:
content = ReasoningContent(**item)
elif content_type == MessageContentType.redacted_reasoning:
content = RedactedReasoningContent(**item)
elif content_type == MessageContentType.omitted_reasoning:
content = OmittedReasoningContent(**item)
else:
# Skip invalid content
continue
message_content.append(content)
return message_content
# --------------------------
# Vector Serialization
# --------------------------
def serialize_vector(vector: Optional[Union[List[float], np.ndarray]]) -> Optional[bytes]:
"""Convert a NumPy array or list into a base64-encoded byte string."""
if vector is None:
return None
if isinstance(vector, list):
vector = np.array(vector, dtype=np.float32)
return base64.b64encode(vector.tobytes())
def deserialize_vector(data: Optional[bytes], dialect: Dialect) -> Optional[np.ndarray]:
"""Convert a base64-encoded byte string back into a NumPy array."""
if not data:
return None
if dialect.name == "sqlite":
data = base64.b64decode(data)
return np.frombuffer(data, dtype=np.float32)
# --------------------------
# Batch Request Serialization
# --------------------------
def serialize_create_batch_response(create_batch_response: Union[BetaMessageBatch]) -> Dict[str, Any]:
"""Convert a list of ToolRules into a JSON-serializable format."""
llm_provider_type = None
if isinstance(create_batch_response, BetaMessageBatch):
llm_provider_type = ProviderType.anthropic.value
if not llm_provider_type:
raise ValueError(f"Could not determine llm provider from create batch response object type: {create_batch_response}")
return {"data": create_batch_response.model_dump(mode="json"), "type": llm_provider_type}
def deserialize_create_batch_response(data: Dict) -> Union[BetaMessageBatch]:
provider_type = ProviderType(data.get("type"))
if provider_type == ProviderType.anthropic:
return BetaMessageBatch(**data.get("data"))
raise ValueError(f"Unknown ProviderType type: {provider_type}")
# TODO: Note that this is the same as above for Anthropic, but this is not the case for all providers
# TODO: Some have different types based on the create v.s. poll requests
def serialize_poll_batch_response(poll_batch_response: Optional[Union[BetaMessageBatch]]) -> Optional[Dict[str, Any]]:
"""Convert a list of ToolRules into a JSON-serializable format."""
if not poll_batch_response:
return None
llm_provider_type = None
if isinstance(poll_batch_response, BetaMessageBatch):
llm_provider_type = ProviderType.anthropic.value
if not llm_provider_type:
raise ValueError(f"Could not determine llm provider from poll batch response object type: {poll_batch_response}")
return {"data": poll_batch_response.model_dump(mode="json"), "type": llm_provider_type}
def deserialize_poll_batch_response(data: Optional[Dict]) -> Optional[Union[BetaMessageBatch]]:
if not data:
return None
provider_type = ProviderType(data.get("type"))
if provider_type == ProviderType.anthropic:
return BetaMessageBatch(**data.get("data"))
raise ValueError(f"Unknown ProviderType type: {provider_type}")
def serialize_batch_request_result(
batch_individual_response: Optional[Union[BetaMessageBatchIndividualResponse]],
) -> Optional[Dict[str, Any]]:
"""Convert a list of ToolRules into a JSON-serializable format."""
if not batch_individual_response:
return None
llm_provider_type = None
if isinstance(batch_individual_response, BetaMessageBatchIndividualResponse):
llm_provider_type = ProviderType.anthropic.value
if not llm_provider_type:
raise ValueError(f"Could not determine llm provider from batch result object type: {batch_individual_response}")
return {"data": batch_individual_response.model_dump(mode="json"), "type": llm_provider_type}
def deserialize_batch_request_result(data: Optional[Dict]) -> Optional[Union[BetaMessageBatchIndividualResponse]]:
if not data:
return None
provider_type = ProviderType(data.get("type"))
if provider_type == ProviderType.anthropic:
return BetaMessageBatchIndividualResponse(**data.get("data"))
raise ValueError(f"Unknown ProviderType type: {provider_type}")
def serialize_agent_step_state(agent_step_state: Optional[AgentStepState]) -> Optional[Dict[str, Any]]:
"""Convert a list of ToolRules into a JSON-serializable format."""
if not agent_step_state:
return None
return agent_step_state.model_dump(mode="json")
def deserialize_agent_step_state(data: Optional[Dict]) -> Optional[AgentStepState]:
if not data:
return None
return AgentStepState(**data)
# --------------------------
# Response Format Serialization
# --------------------------
def serialize_response_format(response_format: Optional[ResponseFormatUnion]) -> Optional[Dict[str, Any]]:
if not response_format:
return None
return response_format.model_dump(mode="json")
def deserialize_response_format(data: Optional[Dict]) -> Optional[ResponseFormatUnion]:
if not data:
return None
if data["type"] == ResponseFormatType.text:
return TextResponseFormat(**data)
if data["type"] == ResponseFormatType.json_schema:
return JsonSchemaResponseFormat(**data)
if data["type"] == ResponseFormatType.json_object:
return JsonObjectResponseFormat(**data)