MemGPT/letta/orm/agent.py

203 lines
9.0 KiB
Python

import uuid
from typing import TYPE_CHECKING, List, Optional, Set
from sqlalchemy import JSON, Boolean, Index, String
from sqlalchemy.orm import Mapped, mapped_column, relationship
from letta.orm.block import Block
from letta.orm.custom_columns import EmbeddingConfigColumn, LLMConfigColumn, ResponseFormatColumn, ToolRulesColumn
from letta.orm.identity import Identity
from letta.orm.mixins import OrganizationMixin
from letta.orm.organization import Organization
from letta.orm.sqlalchemy_base import SqlalchemyBase
from letta.schemas.agent import AgentState as PydanticAgentState
from letta.schemas.agent import AgentType, get_prompt_template_for_agent_type
from letta.schemas.embedding_config import EmbeddingConfig
from letta.schemas.llm_config import LLMConfig
from letta.schemas.memory import Memory
from letta.schemas.response_format import ResponseFormatUnion
from letta.schemas.tool_rule import ToolRule
if TYPE_CHECKING:
from letta.orm.agents_tags import AgentsTags
from letta.orm.identity import Identity
from letta.orm.organization import Organization
from letta.orm.source import Source
from letta.orm.tool import Tool
class Agent(SqlalchemyBase, OrganizationMixin):
__tablename__ = "agents"
__pydantic_model__ = PydanticAgentState
__table_args__ = (Index("ix_agents_created_at", "created_at", "id"),)
# agent generates its own id
# TODO: We want to migrate all the ORM models to do this, so we will need to move this to the SqlalchemyBase
# TODO: Some still rely on the Pydantic object to do this
id: Mapped[str] = mapped_column(String, primary_key=True, default=lambda: f"agent-{uuid.uuid4()}")
# Descriptor fields
agent_type: Mapped[Optional[AgentType]] = mapped_column(String, nullable=True, doc="The type of Agent")
name: Mapped[Optional[str]] = mapped_column(String, nullable=True, doc="a human-readable identifier for an agent, non-unique.")
description: Mapped[Optional[str]] = mapped_column(String, nullable=True, doc="The description of the agent.")
# System prompt
system: Mapped[Optional[str]] = mapped_column(String, nullable=True, doc="The system prompt used by the agent.")
# In context memory
# TODO: This should be a separate mapping table
# This is dangerously flexible with the JSON type
message_ids: Mapped[Optional[List[str]]] = mapped_column(JSON, nullable=True, doc="List of message IDs in in-context memory.")
# Response Format
response_format: Mapped[Optional[ResponseFormatUnion]] = mapped_column(
ResponseFormatColumn, nullable=True, doc="The response format for the agent."
)
# Metadata and configs
metadata_: Mapped[Optional[dict]] = mapped_column(JSON, nullable=True, doc="metadata for the agent.")
llm_config: Mapped[Optional[LLMConfig]] = mapped_column(
LLMConfigColumn, nullable=True, doc="the LLM backend configuration object for this agent."
)
embedding_config: Mapped[Optional[EmbeddingConfig]] = mapped_column(
EmbeddingConfigColumn, doc="the embedding configuration object for this agent."
)
project_id: Mapped[Optional[str]] = mapped_column(String, nullable=True, doc="The id of the project the agent belongs to.")
template_id: Mapped[Optional[str]] = mapped_column(String, nullable=True, doc="The id of the template the agent belongs to.")
base_template_id: Mapped[Optional[str]] = mapped_column(String, nullable=True, doc="The base template id of the agent.")
# Tool rules
tool_rules: Mapped[Optional[List[ToolRule]]] = mapped_column(ToolRulesColumn, doc="the tool rules for this agent.")
# Stateless
message_buffer_autoclear: Mapped[bool] = mapped_column(
Boolean, doc="If set to True, the agent will not remember previous messages. Not recommended unless you have an advanced use case."
)
enable_sleeptime: Mapped[Optional[bool]] = mapped_column(
Boolean, doc="If set to True, memory management will move to a background agent thread."
)
# relationships
organization: Mapped["Organization"] = relationship("Organization", back_populates="agents")
tool_exec_environment_variables: Mapped[List["AgentEnvironmentVariable"]] = relationship(
"AgentEnvironmentVariable",
back_populates="agent",
cascade="all, delete-orphan",
lazy="selectin",
doc="Environment variables associated with this agent.",
)
tools: Mapped[List["Tool"]] = relationship("Tool", secondary="tools_agents", lazy="selectin", passive_deletes=True)
sources: Mapped[List["Source"]] = relationship("Source", secondary="sources_agents", lazy="selectin")
core_memory: Mapped[List["Block"]] = relationship(
"Block",
secondary="blocks_agents",
lazy="selectin",
passive_deletes=True, # Ensures SQLAlchemy doesn't fetch blocks_agents rows before deleting
back_populates="agents",
doc="Blocks forming the core memory of the agent.",
)
tags: Mapped[List["AgentsTags"]] = relationship(
"AgentsTags",
back_populates="agent",
cascade="all, delete-orphan",
lazy="selectin",
doc="Tags associated with the agent.",
)
identities: Mapped[List["Identity"]] = relationship(
"Identity",
secondary="identities_agents",
lazy="selectin",
back_populates="agents",
passive_deletes=True,
)
groups: Mapped[List["Group"]] = relationship(
"Group",
secondary="groups_agents",
lazy="selectin",
back_populates="agents",
passive_deletes=True,
)
multi_agent_group: Mapped["Group"] = relationship(
"Group",
lazy="joined",
viewonly=True,
back_populates="manager_agent",
)
batch_items: Mapped[List["LLMBatchItem"]] = relationship("LLMBatchItem", back_populates="agent", lazy="selectin")
def to_pydantic(self, include_relationships: Optional[Set[str]] = None) -> PydanticAgentState:
"""
Converts the SQLAlchemy Agent model into its Pydantic counterpart.
The following base fields are always included:
- id, agent_type, name, description, system, message_ids, metadata_,
llm_config, embedding_config, project_id, template_id, base_template_id,
tool_rules, message_buffer_autoclear, tags
Everything else (e.g., tools, sources, memory, etc.) is optional and only
included if specified in `include_fields`.
Args:
include_relationships (Optional[Set[str]]):
A set of additional field names to include in the output. If None or empty,
no extra fields are loaded beyond the base fields.
Returns:
PydanticAgentState: The Pydantic representation of the agent.
"""
# Base fields: always included
state = {
"id": self.id,
"agent_type": self.agent_type,
"name": self.name,
"description": self.description,
"system": self.system,
"message_ids": self.message_ids,
"metadata": self.metadata_, # Exposed as 'metadata' to Pydantic
"llm_config": self.llm_config,
"embedding_config": self.embedding_config,
"project_id": self.project_id,
"template_id": self.template_id,
"base_template_id": self.base_template_id,
"tool_rules": self.tool_rules,
"message_buffer_autoclear": self.message_buffer_autoclear,
"created_by_id": self.created_by_id,
"last_updated_by_id": self.last_updated_by_id,
"created_at": self.created_at,
"updated_at": self.updated_at,
# optional field defaults
"tags": [],
"tools": [],
"sources": [],
"memory": Memory(blocks=[]),
"identity_ids": [],
"multi_agent_group": None,
"tool_exec_environment_variables": [],
"enable_sleeptime": None,
"response_format": self.response_format,
}
# Optional fields: only included if requested
optional_fields = {
"tags": lambda: [t.tag for t in self.tags],
"tools": lambda: self.tools,
"sources": lambda: [s.to_pydantic() for s in self.sources],
"memory": lambda: Memory(
blocks=[b.to_pydantic() for b in self.core_memory],
prompt_template=get_prompt_template_for_agent_type(self.agent_type),
),
"identity_ids": lambda: [i.id for i in self.identities],
"multi_agent_group": lambda: self.multi_agent_group,
"tool_exec_environment_variables": lambda: self.tool_exec_environment_variables,
"enable_sleeptime": lambda: self.enable_sleeptime,
}
include_relationships = set(optional_fields.keys() if include_relationships is None else include_relationships)
for field_name in include_relationships:
resolver = optional_fields.get(field_name)
if resolver:
state[field_name] = resolver()
return self.__pydantic_model__(**state)