mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00

Co-authored-by: Matthew Zhou <mattzh1314@gmail.com> Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
83 lines
3.3 KiB
Python
83 lines
3.3 KiB
Python
from typing import Literal, Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class EmbeddingConfig(BaseModel):
|
|
"""
|
|
|
|
Embedding model configuration. This object specifies all the information necessary to access an embedding model to usage with Letta, except for secret keys.
|
|
|
|
Attributes:
|
|
embedding_endpoint_type (str): The endpoint type for the model.
|
|
embedding_endpoint (str): The endpoint for the model.
|
|
embedding_model (str): The model for the embedding.
|
|
embedding_dim (int): The dimension of the embedding.
|
|
embedding_chunk_size (int): The chunk size of the embedding.
|
|
azure_endpoint (:obj:`str`, optional): The Azure endpoint for the model (Azure only).
|
|
azure_version (str): The Azure version for the model (Azure only).
|
|
azure_deployment (str): The Azure deployment for the model (Azure only).
|
|
|
|
"""
|
|
|
|
embedding_endpoint_type: Literal[
|
|
"openai",
|
|
"anthropic",
|
|
"bedrock",
|
|
"cohere",
|
|
"google_ai",
|
|
"google_vertex",
|
|
"azure",
|
|
"groq",
|
|
"ollama",
|
|
"webui",
|
|
"webui-legacy",
|
|
"lmstudio",
|
|
"lmstudio-legacy",
|
|
"llamacpp",
|
|
"koboldcpp",
|
|
"vllm",
|
|
"hugging-face",
|
|
"mistral",
|
|
"together", # completions endpoint
|
|
] = Field(..., description="The endpoint type for the model.")
|
|
embedding_endpoint: Optional[str] = Field(None, description="The endpoint for the model (`None` if local).")
|
|
embedding_model: str = Field(..., description="The model for the embedding.")
|
|
embedding_dim: int = Field(..., description="The dimension of the embedding.")
|
|
embedding_chunk_size: Optional[int] = Field(300, description="The chunk size of the embedding.")
|
|
handle: Optional[str] = Field(None, description="The handle for this config, in the format provider/model-name.")
|
|
|
|
# azure only
|
|
azure_endpoint: Optional[str] = Field(None, description="The Azure endpoint for the model.")
|
|
azure_version: Optional[str] = Field(None, description="The Azure version for the model.")
|
|
azure_deployment: Optional[str] = Field(None, description="The Azure deployment for the model.")
|
|
|
|
@classmethod
|
|
def default_config(cls, model_name: Optional[str] = None, provider: Optional[str] = None):
|
|
|
|
if model_name == "text-embedding-ada-002" or (not model_name and provider == "openai"):
|
|
return cls(
|
|
embedding_model="text-embedding-ada-002",
|
|
embedding_endpoint_type="openai",
|
|
embedding_endpoint="https://api.openai.com/v1",
|
|
embedding_dim=1536,
|
|
embedding_chunk_size=300,
|
|
)
|
|
elif model_name == "letta":
|
|
return cls(
|
|
embedding_endpoint="https://embeddings.memgpt.ai",
|
|
embedding_model="BAAI/bge-large-en-v1.5",
|
|
embedding_dim=1024,
|
|
embedding_chunk_size=300,
|
|
embedding_endpoint_type="hugging-face",
|
|
)
|
|
else:
|
|
raise ValueError(f"Model {model_name} not supported.")
|
|
|
|
def pretty_print(self) -> str:
|
|
return (
|
|
f"{self.embedding_model}"
|
|
+ (f" [type={self.embedding_endpoint_type}]" if self.embedding_endpoint_type else "")
|
|
+ (f" [ip={self.embedding_endpoint}]" if self.embedding_endpoint else "")
|
|
)
|