mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
1061 lines
48 KiB
Python
1061 lines
48 KiB
Python
from __future__ import annotations
|
|
|
|
import copy
|
|
import json
|
|
import uuid
|
|
import warnings
|
|
from collections import OrderedDict
|
|
from datetime import datetime, timezone
|
|
from typing import Any, Dict, List, Literal, Optional, Union
|
|
|
|
from openai.types.chat.chat_completion_message_tool_call import ChatCompletionMessageToolCall as OpenAIToolCall
|
|
from openai.types.chat.chat_completion_message_tool_call import Function as OpenAIFunction
|
|
from pydantic import BaseModel, Field, field_validator
|
|
|
|
from letta.constants import DEFAULT_MESSAGE_TOOL, DEFAULT_MESSAGE_TOOL_KWARG, TOOL_CALL_ID_MAX_LEN
|
|
from letta.helpers.datetime_helpers import get_utc_time, is_utc_datetime
|
|
from letta.helpers.json_helpers import json_dumps
|
|
from letta.local_llm.constants import INNER_THOUGHTS_KWARG
|
|
from letta.schemas.enums import MessageRole
|
|
from letta.schemas.letta_base import OrmMetadataBase
|
|
from letta.schemas.letta_message import (
|
|
AssistantMessage,
|
|
HiddenReasoningMessage,
|
|
LettaMessage,
|
|
ReasoningMessage,
|
|
SystemMessage,
|
|
ToolCall,
|
|
ToolCallMessage,
|
|
ToolReturnMessage,
|
|
UserMessage,
|
|
)
|
|
from letta.schemas.letta_message_content import (
|
|
LettaMessageContentUnion,
|
|
ReasoningContent,
|
|
RedactedReasoningContent,
|
|
TextContent,
|
|
get_letta_message_content_union_str_json_schema,
|
|
)
|
|
from letta.system import unpack_message
|
|
from letta.utils import parse_json
|
|
|
|
|
|
def add_inner_thoughts_to_tool_call(
|
|
tool_call: OpenAIToolCall,
|
|
inner_thoughts: str,
|
|
inner_thoughts_key: str,
|
|
) -> OpenAIToolCall:
|
|
"""Add inner thoughts (arg + value) to a tool call"""
|
|
try:
|
|
# load the args list
|
|
func_args = parse_json(tool_call.function.arguments)
|
|
# create new ordered dict with inner thoughts first
|
|
ordered_args = OrderedDict({inner_thoughts_key: inner_thoughts})
|
|
# update with remaining args
|
|
ordered_args.update(func_args)
|
|
# create the updated tool call (as a string)
|
|
updated_tool_call = copy.deepcopy(tool_call)
|
|
updated_tool_call.function.arguments = json_dumps(ordered_args)
|
|
return updated_tool_call
|
|
except json.JSONDecodeError as e:
|
|
warnings.warn(f"Failed to put inner thoughts in kwargs: {e}")
|
|
raise e
|
|
|
|
|
|
class BaseMessage(OrmMetadataBase):
|
|
__id_prefix__ = "message"
|
|
|
|
|
|
class MessageCreate(BaseModel):
|
|
"""Request to create a message"""
|
|
|
|
# In the simplified format, only allow simple roles
|
|
role: Literal[
|
|
MessageRole.user,
|
|
MessageRole.system,
|
|
] = Field(..., description="The role of the participant.")
|
|
content: Union[str, List[LettaMessageContentUnion]] = Field(
|
|
...,
|
|
description="The content of the message.",
|
|
json_schema_extra=get_letta_message_content_union_str_json_schema(),
|
|
)
|
|
name: Optional[str] = Field(None, description="The name of the participant.")
|
|
otid: Optional[str] = Field(None, description="The offline threading id associated with this message")
|
|
sender_id: Optional[str] = Field(None, description="The id of the sender of the message, can be an identity id or agent id")
|
|
group_id: Optional[str] = Field(None, description="The multi-agent group that the message was sent in")
|
|
|
|
def model_dump(self, to_orm: bool = False, **kwargs) -> Dict[str, Any]:
|
|
data = super().model_dump(**kwargs)
|
|
if to_orm and "content" in data:
|
|
if isinstance(data["content"], str):
|
|
data["content"] = [TextContent(text=data["content"])]
|
|
return data
|
|
|
|
|
|
class MessageUpdate(BaseModel):
|
|
"""Request to update a message"""
|
|
|
|
role: Optional[MessageRole] = Field(None, description="The role of the participant.")
|
|
content: Optional[Union[str, List[LettaMessageContentUnion]]] = Field(
|
|
None,
|
|
description="The content of the message.",
|
|
json_schema_extra=get_letta_message_content_union_str_json_schema(),
|
|
)
|
|
# NOTE: probably doesn't make sense to allow remapping user_id or agent_id (vs creating a new message)
|
|
# user_id: Optional[str] = Field(None, description="The unique identifier of the user.")
|
|
# agent_id: Optional[str] = Field(None, description="The unique identifier of the agent.")
|
|
# NOTE: we probably shouldn't allow updating the model field, otherwise this loses meaning
|
|
# model: Optional[str] = Field(None, description="The model used to make the function call.")
|
|
name: Optional[str] = Field(None, description="The name of the participant.")
|
|
# NOTE: we probably shouldn't allow updating the created_at field, right?
|
|
# created_at: Optional[datetime] = Field(None, description="The time the message was created.")
|
|
tool_calls: Optional[List[OpenAIToolCall,]] = Field(None, description="The list of tool calls requested.")
|
|
tool_call_id: Optional[str] = Field(None, description="The id of the tool call.")
|
|
|
|
def model_dump(self, to_orm: bool = False, **kwargs) -> Dict[str, Any]:
|
|
data = super().model_dump(**kwargs)
|
|
if to_orm and "content" in data:
|
|
if isinstance(data["content"], str):
|
|
data["content"] = [TextContent(text=data["content"])]
|
|
return data
|
|
|
|
|
|
class Message(BaseMessage):
|
|
"""
|
|
Letta's internal representation of a message. Includes methods to convert to/from LLM provider formats.
|
|
|
|
Attributes:
|
|
id (str): The unique identifier of the message.
|
|
role (MessageRole): The role of the participant.
|
|
text (str): The text of the message.
|
|
user_id (str): The unique identifier of the user.
|
|
agent_id (str): The unique identifier of the agent.
|
|
model (str): The model used to make the function call.
|
|
name (str): The name of the participant.
|
|
created_at (datetime): The time the message was created.
|
|
tool_calls (List[OpenAIToolCall,]): The list of tool calls requested.
|
|
tool_call_id (str): The id of the tool call.
|
|
|
|
"""
|
|
|
|
id: str = BaseMessage.generate_id_field()
|
|
organization_id: Optional[str] = Field(None, description="The unique identifier of the organization.")
|
|
agent_id: Optional[str] = Field(None, description="The unique identifier of the agent.")
|
|
model: Optional[str] = Field(None, description="The model used to make the function call.")
|
|
# Basic OpenAI-style fields
|
|
role: MessageRole = Field(..., description="The role of the participant.")
|
|
content: Optional[List[LettaMessageContentUnion]] = Field(None, description="The content of the message.")
|
|
# NOTE: in OpenAI, this field is only used for roles 'user', 'assistant', and 'function' (now deprecated). 'tool' does not use it.
|
|
name: Optional[str] = Field(
|
|
None,
|
|
description="For role user/assistant: the (optional) name of the participant. For role tool/function: the name of the function called.",
|
|
)
|
|
tool_calls: Optional[List[OpenAIToolCall]] = Field(
|
|
None, description="The list of tool calls requested. Only applicable for role assistant."
|
|
)
|
|
tool_call_id: Optional[str] = Field(None, description="The ID of the tool call. Only applicable for role tool.")
|
|
# Extras
|
|
step_id: Optional[str] = Field(None, description="The id of the step that this message was created in.")
|
|
otid: Optional[str] = Field(None, description="The offline threading id associated with this message")
|
|
tool_returns: Optional[List[ToolReturn]] = Field(None, description="Tool execution return information for prior tool calls")
|
|
group_id: Optional[str] = Field(None, description="The multi-agent group that the message was sent in")
|
|
sender_id: Optional[str] = Field(None, description="The id of the sender of the message, can be an identity id or agent id")
|
|
# This overrides the optional base orm schema, created_at MUST exist on all messages objects
|
|
created_at: datetime = Field(default_factory=get_utc_time, description="The timestamp when the object was created.")
|
|
|
|
@field_validator("role")
|
|
@classmethod
|
|
def validate_role(cls, v: str) -> str:
|
|
roles = ["system", "assistant", "user", "tool"]
|
|
assert v in roles, f"Role must be one of {roles}"
|
|
return v
|
|
|
|
def to_json(self):
|
|
json_message = vars(self)
|
|
if json_message["tool_calls"] is not None:
|
|
json_message["tool_calls"] = [vars(tc) for tc in json_message["tool_calls"]]
|
|
# turn datetime to ISO format
|
|
# also if the created_at is missing a timezone, add UTC
|
|
if not is_utc_datetime(self.created_at):
|
|
self.created_at = self.created_at.replace(tzinfo=timezone.utc)
|
|
json_message["created_at"] = self.created_at.isoformat()
|
|
return json_message
|
|
|
|
@staticmethod
|
|
def generate_otid():
|
|
return str(uuid.uuid4())
|
|
|
|
@staticmethod
|
|
def to_letta_messages_from_list(
|
|
messages: List[Message],
|
|
use_assistant_message: bool = True,
|
|
assistant_message_tool_name: str = DEFAULT_MESSAGE_TOOL,
|
|
assistant_message_tool_kwarg: str = DEFAULT_MESSAGE_TOOL_KWARG,
|
|
reverse: bool = True,
|
|
) -> List[LettaMessage]:
|
|
if use_assistant_message:
|
|
message_ids_to_remove = []
|
|
assistant_messages_by_tool_call = {
|
|
tool_call.id: msg
|
|
for msg in messages
|
|
if msg.role == MessageRole.assistant and msg.tool_calls
|
|
for tool_call in msg.tool_calls
|
|
}
|
|
for message in messages:
|
|
if (
|
|
message.role == MessageRole.tool
|
|
and message.tool_call_id in assistant_messages_by_tool_call
|
|
and assistant_messages_by_tool_call[message.tool_call_id].tool_calls
|
|
and assistant_message_tool_name
|
|
in [tool_call.function.name for tool_call in assistant_messages_by_tool_call[message.tool_call_id].tool_calls]
|
|
):
|
|
message_ids_to_remove.append(message.id)
|
|
|
|
messages = [msg for msg in messages if msg.id not in message_ids_to_remove]
|
|
|
|
# Convert messages to LettaMessages
|
|
return [
|
|
msg
|
|
for m in messages
|
|
for msg in m.to_letta_message(
|
|
use_assistant_message=use_assistant_message,
|
|
assistant_message_tool_name=assistant_message_tool_name,
|
|
assistant_message_tool_kwarg=assistant_message_tool_kwarg,
|
|
reverse=reverse,
|
|
)
|
|
]
|
|
|
|
def to_letta_message(
|
|
self,
|
|
use_assistant_message: bool = False,
|
|
assistant_message_tool_name: str = DEFAULT_MESSAGE_TOOL,
|
|
assistant_message_tool_kwarg: str = DEFAULT_MESSAGE_TOOL_KWARG,
|
|
reverse: bool = True,
|
|
) -> List[LettaMessage]:
|
|
"""Convert message object (in DB format) to the style used by the original Letta API"""
|
|
messages = []
|
|
|
|
if self.role == MessageRole.assistant:
|
|
|
|
# Handle reasoning
|
|
if self.content:
|
|
# Check for ReACT-style COT inside of TextContent
|
|
if len(self.content) == 1 and isinstance(self.content[0], TextContent):
|
|
otid = Message.generate_otid_from_id(self.id, len(messages))
|
|
messages.append(
|
|
ReasoningMessage(
|
|
id=self.id,
|
|
date=self.created_at,
|
|
reasoning=self.content[0].text,
|
|
name=self.name,
|
|
otid=otid,
|
|
sender_id=self.sender_id,
|
|
)
|
|
)
|
|
# Otherwise, we may have a list of multiple types
|
|
else:
|
|
# TODO we can probably collapse these two cases into a single loop
|
|
for content_part in self.content:
|
|
otid = Message.generate_otid_from_id(self.id, len(messages))
|
|
if isinstance(content_part, TextContent):
|
|
# COT
|
|
messages.append(
|
|
ReasoningMessage(
|
|
id=self.id,
|
|
date=self.created_at,
|
|
reasoning=content_part.text,
|
|
name=self.name,
|
|
otid=otid,
|
|
sender_id=self.sender_id,
|
|
)
|
|
)
|
|
elif isinstance(content_part, ReasoningContent):
|
|
# "native" COT
|
|
messages.append(
|
|
ReasoningMessage(
|
|
id=self.id,
|
|
date=self.created_at,
|
|
reasoning=content_part.reasoning,
|
|
source="reasoner_model", # TODO do we want to tag like this?
|
|
signature=content_part.signature,
|
|
name=self.name,
|
|
otid=otid,
|
|
)
|
|
)
|
|
elif isinstance(content_part, RedactedReasoningContent):
|
|
# "native" redacted/hidden COT
|
|
messages.append(
|
|
HiddenReasoningMessage(
|
|
id=self.id,
|
|
date=self.created_at,
|
|
state="redacted",
|
|
hidden_reasoning=content_part.data,
|
|
name=self.name,
|
|
otid=otid,
|
|
sender_id=self.sender_id,
|
|
)
|
|
)
|
|
else:
|
|
warnings.warn(f"Unrecognized content part in assistant message: {content_part}")
|
|
|
|
if self.tool_calls is not None:
|
|
# This is type FunctionCall
|
|
for tool_call in self.tool_calls:
|
|
otid = Message.generate_otid_from_id(self.id, len(messages))
|
|
# If we're supporting using assistant message,
|
|
# then we want to treat certain function calls as a special case
|
|
if use_assistant_message and tool_call.function.name == assistant_message_tool_name:
|
|
# We need to unpack the actual message contents from the function call
|
|
try:
|
|
func_args = parse_json(tool_call.function.arguments)
|
|
message_string = func_args[assistant_message_tool_kwarg]
|
|
except KeyError:
|
|
raise ValueError(f"Function call {tool_call.function.name} missing {assistant_message_tool_kwarg} argument")
|
|
messages.append(
|
|
AssistantMessage(
|
|
id=self.id,
|
|
date=self.created_at,
|
|
content=message_string,
|
|
name=self.name,
|
|
otid=otid,
|
|
sender_id=self.sender_id,
|
|
)
|
|
)
|
|
else:
|
|
messages.append(
|
|
ToolCallMessage(
|
|
id=self.id,
|
|
date=self.created_at,
|
|
tool_call=ToolCall(
|
|
name=tool_call.function.name,
|
|
arguments=tool_call.function.arguments,
|
|
tool_call_id=tool_call.id,
|
|
),
|
|
name=self.name,
|
|
otid=otid,
|
|
sender_id=self.sender_id,
|
|
)
|
|
)
|
|
elif self.role == MessageRole.tool:
|
|
# This is type ToolReturnMessage
|
|
# Try to interpret the function return, recall that this is how we packaged:
|
|
# def package_function_response(was_success, response_string, timestamp=None):
|
|
# formatted_time = get_local_time() if timestamp is None else timestamp
|
|
# packaged_message = {
|
|
# "status": "OK" if was_success else "Failed",
|
|
# "message": response_string,
|
|
# "time": formatted_time,
|
|
# }
|
|
if self.content and len(self.content) == 1 and isinstance(self.content[0], TextContent):
|
|
text_content = self.content[0].text
|
|
else:
|
|
raise ValueError(f"Invalid tool return (no text object on message): {self.content}")
|
|
|
|
try:
|
|
function_return = parse_json(text_content)
|
|
status = function_return["status"]
|
|
if status == "OK":
|
|
status_enum = "success"
|
|
elif status == "Failed":
|
|
status_enum = "error"
|
|
else:
|
|
raise ValueError(f"Invalid status: {status}")
|
|
except json.JSONDecodeError:
|
|
raise ValueError(f"Failed to decode function return: {text_content}")
|
|
assert self.tool_call_id is not None
|
|
messages.append(
|
|
# TODO make sure this is what the API returns
|
|
# function_return may not match exactly...
|
|
ToolReturnMessage(
|
|
id=self.id,
|
|
date=self.created_at,
|
|
tool_return=text_content,
|
|
status=self.tool_returns[0].status if self.tool_returns else status_enum,
|
|
tool_call_id=self.tool_call_id,
|
|
stdout=self.tool_returns[0].stdout if self.tool_returns else None,
|
|
stderr=self.tool_returns[0].stderr if self.tool_returns else None,
|
|
name=self.name,
|
|
otid=self.id.replace("message-", ""),
|
|
sender_id=self.sender_id,
|
|
)
|
|
)
|
|
elif self.role == MessageRole.user:
|
|
# This is type UserMessage
|
|
if self.content and len(self.content) == 1 and isinstance(self.content[0], TextContent):
|
|
text_content = self.content[0].text
|
|
else:
|
|
raise ValueError(f"Invalid user message (no text object on message): {self.content}")
|
|
|
|
message_str = unpack_message(text_content)
|
|
messages.append(
|
|
UserMessage(
|
|
id=self.id,
|
|
date=self.created_at,
|
|
content=message_str or text_content,
|
|
name=self.name,
|
|
otid=self.otid,
|
|
sender_id=self.sender_id,
|
|
)
|
|
)
|
|
elif self.role == MessageRole.system:
|
|
# This is type SystemMessage
|
|
if self.content and len(self.content) == 1 and isinstance(self.content[0], TextContent):
|
|
text_content = self.content[0].text
|
|
else:
|
|
raise ValueError(f"Invalid system message (no text object on system): {self.content}")
|
|
|
|
messages.append(
|
|
SystemMessage(
|
|
id=self.id,
|
|
date=self.created_at,
|
|
content=text_content,
|
|
name=self.name,
|
|
otid=self.otid,
|
|
sender_id=self.sender_id,
|
|
)
|
|
)
|
|
else:
|
|
raise ValueError(self.role)
|
|
|
|
if reverse:
|
|
messages.reverse()
|
|
|
|
return messages
|
|
|
|
@staticmethod
|
|
def dict_to_message(
|
|
agent_id: str,
|
|
openai_message_dict: dict,
|
|
model: Optional[str] = None, # model used to make function call
|
|
allow_functions_style: bool = False, # allow deprecated functions style?
|
|
created_at: Optional[datetime] = None,
|
|
id: Optional[str] = None,
|
|
name: Optional[str] = None,
|
|
group_id: Optional[str] = None,
|
|
tool_returns: Optional[List[ToolReturn]] = None,
|
|
):
|
|
"""Convert a ChatCompletion message object into a Message object (synced to DB)"""
|
|
if not created_at:
|
|
# timestamp for creation
|
|
created_at = get_utc_time()
|
|
|
|
assert "role" in openai_message_dict, openai_message_dict
|
|
assert "content" in openai_message_dict, openai_message_dict
|
|
|
|
# TODO(caren) implicit support for only non-parts/list content types
|
|
if openai_message_dict["content"] is not None and type(openai_message_dict["content"]) is not str:
|
|
raise ValueError(f"Invalid content type: {type(openai_message_dict['content'])}")
|
|
content = [TextContent(text=openai_message_dict["content"])] if openai_message_dict["content"] else []
|
|
|
|
# TODO(caren) bad assumption here that "reasoning_content" always comes before "redacted_reasoning_content"
|
|
if "reasoning_content" in openai_message_dict and openai_message_dict["reasoning_content"]:
|
|
content.append(
|
|
ReasoningContent(
|
|
reasoning=openai_message_dict["reasoning_content"],
|
|
is_native=True,
|
|
signature=(
|
|
openai_message_dict["reasoning_content_signature"] if openai_message_dict["reasoning_content_signature"] else None
|
|
),
|
|
),
|
|
)
|
|
if "redacted_reasoning_content" in openai_message_dict and openai_message_dict["redacted_reasoning_content"]:
|
|
content.append(
|
|
RedactedReasoningContent(
|
|
data=openai_message_dict["redacted_reasoning_content"] if "redacted_reasoning_content" in openai_message_dict else None,
|
|
),
|
|
)
|
|
|
|
# If we're going from deprecated function form
|
|
if openai_message_dict["role"] == "function":
|
|
if not allow_functions_style:
|
|
raise DeprecationWarning(openai_message_dict)
|
|
assert "tool_call_id" in openai_message_dict, openai_message_dict
|
|
|
|
# Convert from 'function' response to a 'tool' response
|
|
if id is not None:
|
|
return Message(
|
|
agent_id=agent_id,
|
|
model=model,
|
|
# standard fields expected in an OpenAI ChatCompletion message object
|
|
role=MessageRole.tool, # NOTE
|
|
content=content,
|
|
name=name,
|
|
tool_calls=openai_message_dict["tool_calls"] if "tool_calls" in openai_message_dict else None,
|
|
tool_call_id=openai_message_dict["tool_call_id"] if "tool_call_id" in openai_message_dict else None,
|
|
created_at=created_at,
|
|
id=str(id),
|
|
tool_returns=tool_returns,
|
|
group_id=group_id,
|
|
)
|
|
else:
|
|
return Message(
|
|
agent_id=agent_id,
|
|
model=model,
|
|
# standard fields expected in an OpenAI ChatCompletion message object
|
|
role=MessageRole.tool, # NOTE
|
|
content=content,
|
|
name=name,
|
|
tool_calls=openai_message_dict["tool_calls"] if "tool_calls" in openai_message_dict else None,
|
|
tool_call_id=openai_message_dict["tool_call_id"] if "tool_call_id" in openai_message_dict else None,
|
|
created_at=created_at,
|
|
tool_returns=tool_returns,
|
|
group_id=group_id,
|
|
)
|
|
|
|
elif "function_call" in openai_message_dict and openai_message_dict["function_call"] is not None:
|
|
if not allow_functions_style:
|
|
raise DeprecationWarning(openai_message_dict)
|
|
assert openai_message_dict["role"] == "assistant", openai_message_dict
|
|
assert "tool_call_id" in openai_message_dict, openai_message_dict
|
|
|
|
# Convert a function_call (from an assistant message) into a tool_call
|
|
# NOTE: this does not conventionally include a tool_call_id (ToolCall.id), it's on the caster to provide it
|
|
tool_calls = [
|
|
OpenAIToolCall(
|
|
id=openai_message_dict["tool_call_id"], # NOTE: unconventional source, not to spec
|
|
type="function",
|
|
function=OpenAIFunction(
|
|
name=openai_message_dict["function_call"]["name"],
|
|
arguments=openai_message_dict["function_call"]["arguments"],
|
|
),
|
|
)
|
|
]
|
|
|
|
if id is not None:
|
|
return Message(
|
|
agent_id=agent_id,
|
|
model=model,
|
|
# standard fields expected in an OpenAI ChatCompletion message object
|
|
role=MessageRole(openai_message_dict["role"]),
|
|
content=content,
|
|
name=name,
|
|
tool_calls=tool_calls,
|
|
tool_call_id=None, # NOTE: None, since this field is only non-null for role=='tool'
|
|
created_at=created_at,
|
|
id=str(id),
|
|
tool_returns=tool_returns,
|
|
group_id=group_id,
|
|
)
|
|
else:
|
|
return Message(
|
|
agent_id=agent_id,
|
|
model=model,
|
|
# standard fields expected in an OpenAI ChatCompletion message object
|
|
role=MessageRole(openai_message_dict["role"]),
|
|
content=content,
|
|
name=openai_message_dict["name"] if "name" in openai_message_dict else None,
|
|
tool_calls=tool_calls,
|
|
tool_call_id=None, # NOTE: None, since this field is only non-null for role=='tool'
|
|
created_at=created_at,
|
|
tool_returns=tool_returns,
|
|
group_id=group_id,
|
|
)
|
|
|
|
else:
|
|
# Basic sanity check
|
|
if openai_message_dict["role"] == "tool":
|
|
assert "tool_call_id" in openai_message_dict and openai_message_dict["tool_call_id"] is not None, openai_message_dict
|
|
else:
|
|
if "tool_call_id" in openai_message_dict:
|
|
assert openai_message_dict["tool_call_id"] is None, openai_message_dict
|
|
|
|
if "tool_calls" in openai_message_dict and openai_message_dict["tool_calls"] is not None:
|
|
assert openai_message_dict["role"] == "assistant", openai_message_dict
|
|
|
|
tool_calls = [
|
|
OpenAIToolCall(id=tool_call["id"], type=tool_call["type"], function=tool_call["function"])
|
|
for tool_call in openai_message_dict["tool_calls"]
|
|
]
|
|
else:
|
|
tool_calls = None
|
|
|
|
# If we're going from tool-call style
|
|
if id is not None:
|
|
return Message(
|
|
agent_id=agent_id,
|
|
model=model,
|
|
# standard fields expected in an OpenAI ChatCompletion message object
|
|
role=MessageRole(openai_message_dict["role"]),
|
|
content=content,
|
|
name=openai_message_dict["name"] if "name" in openai_message_dict else name,
|
|
tool_calls=tool_calls,
|
|
tool_call_id=openai_message_dict["tool_call_id"] if "tool_call_id" in openai_message_dict else None,
|
|
created_at=created_at,
|
|
id=str(id),
|
|
tool_returns=tool_returns,
|
|
group_id=group_id,
|
|
)
|
|
else:
|
|
return Message(
|
|
agent_id=agent_id,
|
|
model=model,
|
|
# standard fields expected in an OpenAI ChatCompletion message object
|
|
role=MessageRole(openai_message_dict["role"]),
|
|
content=content,
|
|
name=openai_message_dict["name"] if "name" in openai_message_dict else name,
|
|
tool_calls=tool_calls,
|
|
tool_call_id=openai_message_dict["tool_call_id"] if "tool_call_id" in openai_message_dict else None,
|
|
created_at=created_at,
|
|
tool_returns=tool_returns,
|
|
group_id=group_id,
|
|
)
|
|
|
|
def to_openai_dict_search_results(self, max_tool_id_length: int = TOOL_CALL_ID_MAX_LEN) -> dict:
|
|
result_json = self.to_openai_dict()
|
|
search_result_json = {"timestamp": self.created_at, "message": {"content": result_json["content"], "role": result_json["role"]}}
|
|
return search_result_json
|
|
|
|
def to_openai_dict(
|
|
self,
|
|
max_tool_id_length: int = TOOL_CALL_ID_MAX_LEN,
|
|
put_inner_thoughts_in_kwargs: bool = False,
|
|
use_developer_message: bool = False,
|
|
) -> dict:
|
|
"""Go from Message class to ChatCompletion message object"""
|
|
|
|
# TODO change to pydantic casting, eg `return SystemMessageModel(self)`
|
|
# If we only have one content part and it's text, treat it as COT
|
|
parse_content_parts = False
|
|
if self.content and len(self.content) == 1 and isinstance(self.content[0], TextContent):
|
|
text_content = self.content[0].text
|
|
# Otherwise, check if we have TextContent and multiple other parts
|
|
elif self.content and len(self.content) > 1:
|
|
text = [content for content in self.content if isinstance(content, TextContent)]
|
|
if len(text) > 1:
|
|
assert len(text) == 1, f"multiple text content parts found in a single message: {self.content}"
|
|
text_content = text[0].text
|
|
parse_content_parts = True
|
|
else:
|
|
text_content = None
|
|
|
|
# TODO(caren) we should eventually support multiple content parts here?
|
|
# ie, actually make dict['content'] type list
|
|
# But for now, it's OK until we support multi-modal,
|
|
# since the only "parts" we have are for supporting various COT
|
|
|
|
if self.role == "system":
|
|
assert all([v is not None for v in [self.role]]), vars(self)
|
|
openai_message = {
|
|
"content": text_content,
|
|
"role": "developer" if use_developer_message else self.role,
|
|
}
|
|
|
|
elif self.role == "user":
|
|
assert all([v is not None for v in [text_content, self.role]]), vars(self)
|
|
openai_message = {
|
|
"content": text_content,
|
|
"role": self.role,
|
|
}
|
|
|
|
elif self.role == "assistant":
|
|
assert self.tool_calls is not None or text_content is not None
|
|
openai_message = {
|
|
"content": None if put_inner_thoughts_in_kwargs else text_content,
|
|
"role": self.role,
|
|
}
|
|
|
|
if self.tool_calls is not None:
|
|
if put_inner_thoughts_in_kwargs:
|
|
# put the inner thoughts inside the tool call before casting to a dict
|
|
openai_message["tool_calls"] = [
|
|
add_inner_thoughts_to_tool_call(
|
|
tool_call,
|
|
inner_thoughts=text_content,
|
|
inner_thoughts_key=INNER_THOUGHTS_KWARG,
|
|
).model_dump()
|
|
for tool_call in self.tool_calls
|
|
]
|
|
else:
|
|
openai_message["tool_calls"] = [tool_call.model_dump() for tool_call in self.tool_calls]
|
|
if max_tool_id_length:
|
|
for tool_call_dict in openai_message["tool_calls"]:
|
|
tool_call_dict["id"] = tool_call_dict["id"][:max_tool_id_length]
|
|
|
|
elif self.role == "tool":
|
|
assert all([v is not None for v in [self.role, self.tool_call_id]]), vars(self)
|
|
openai_message = {
|
|
"content": text_content,
|
|
"role": self.role,
|
|
"tool_call_id": self.tool_call_id[:max_tool_id_length] if max_tool_id_length else self.tool_call_id,
|
|
}
|
|
|
|
else:
|
|
raise ValueError(self.role)
|
|
|
|
if parse_content_parts:
|
|
for content in self.content:
|
|
if isinstance(content, ReasoningContent):
|
|
openai_message["reasoning_content"] = content.reasoning
|
|
if content.signature:
|
|
openai_message["reasoning_content_signature"] = content.signature
|
|
if isinstance(content, RedactedReasoningContent):
|
|
openai_message["redacted_reasoning_content"] = content.data
|
|
|
|
return openai_message
|
|
|
|
def to_anthropic_dict(
|
|
self,
|
|
inner_thoughts_xml_tag="thinking",
|
|
put_inner_thoughts_in_kwargs: bool = False,
|
|
) -> dict:
|
|
"""
|
|
Convert to an Anthropic message dictionary
|
|
|
|
Args:
|
|
inner_thoughts_xml_tag (str): The XML tag to wrap around inner thoughts
|
|
"""
|
|
|
|
# Check for COT
|
|
if self.content and len(self.content) == 1 and isinstance(self.content[0], TextContent):
|
|
text_content = self.content[0].text
|
|
else:
|
|
text_content = None
|
|
|
|
def add_xml_tag(string: str, xml_tag: Optional[str]):
|
|
# NOTE: Anthropic docs recommends using <thinking> tag when using CoT + tool use
|
|
if f"<{xml_tag}>" in string and f"</{xml_tag}>" in string:
|
|
# don't nest if tags already exist
|
|
return string
|
|
return f"<{xml_tag}>{string}</{xml_tag}" if xml_tag else string
|
|
|
|
if self.role == "system":
|
|
# NOTE: this is not for system instructions, but instead system "events"
|
|
|
|
assert all([v is not None for v in [text_content, self.role]]), vars(self)
|
|
# Two options here, we would use system.package_system_message,
|
|
# or use a more Anthropic-specific packaging ie xml tags
|
|
user_system_event = add_xml_tag(string=f"SYSTEM ALERT: {text_content}", xml_tag="event")
|
|
anthropic_message = {
|
|
"content": user_system_event,
|
|
"role": "user",
|
|
}
|
|
|
|
elif self.role == "user":
|
|
assert all([v is not None for v in [text_content, self.role]]), vars(self)
|
|
anthropic_message = {
|
|
"content": text_content,
|
|
"role": self.role,
|
|
}
|
|
|
|
elif self.role == "assistant":
|
|
assert self.tool_calls is not None or text_content is not None
|
|
anthropic_message = {
|
|
"role": self.role,
|
|
}
|
|
content = []
|
|
# COT / reasoning / thinking
|
|
if len(self.content) > 1:
|
|
for content_part in self.content:
|
|
if isinstance(content_part, ReasoningContent):
|
|
content.append(
|
|
{
|
|
"type": "thinking",
|
|
"thinking": content_part.reasoning,
|
|
"signature": content_part.signature,
|
|
}
|
|
)
|
|
if isinstance(content_part, RedactedReasoningContent):
|
|
content.append(
|
|
{
|
|
"type": "redacted_thinking",
|
|
"data": content_part.data,
|
|
}
|
|
)
|
|
elif text_content is not None:
|
|
content.append(
|
|
{
|
|
"type": "text",
|
|
"text": add_xml_tag(string=text_content, xml_tag=inner_thoughts_xml_tag),
|
|
}
|
|
)
|
|
# Tool calling
|
|
if self.tool_calls is not None:
|
|
for tool_call in self.tool_calls:
|
|
|
|
if put_inner_thoughts_in_kwargs:
|
|
tool_call_input = add_inner_thoughts_to_tool_call(
|
|
tool_call,
|
|
inner_thoughts=text_content,
|
|
inner_thoughts_key=INNER_THOUGHTS_KWARG,
|
|
).model_dump()
|
|
else:
|
|
tool_call_input = parse_json(tool_call.function.arguments)
|
|
|
|
content.append(
|
|
{
|
|
"type": "tool_use",
|
|
"id": tool_call.id,
|
|
"name": tool_call.function.name,
|
|
"input": tool_call_input,
|
|
}
|
|
)
|
|
|
|
# If the only content was text, unpack it back into a singleton
|
|
# TODO support multi-modal
|
|
anthropic_message["content"] = content
|
|
|
|
elif self.role == "tool":
|
|
# NOTE: Anthropic uses role "user" for "tool" responses
|
|
assert all([v is not None for v in [self.role, self.tool_call_id]]), vars(self)
|
|
anthropic_message = {
|
|
"role": "user", # NOTE: diff
|
|
"content": [
|
|
# TODO support error types etc
|
|
{
|
|
"type": "tool_result",
|
|
"tool_use_id": self.tool_call_id,
|
|
"content": text_content,
|
|
}
|
|
],
|
|
}
|
|
|
|
else:
|
|
raise ValueError(self.role)
|
|
|
|
return anthropic_message
|
|
|
|
def to_google_ai_dict(self, put_inner_thoughts_in_kwargs: bool = True) -> dict:
|
|
"""
|
|
Go from Message class to Google AI REST message object
|
|
"""
|
|
# type Content: https://ai.google.dev/api/rest/v1/Content / https://ai.google.dev/api/rest/v1beta/Content
|
|
# parts[]: Part
|
|
# role: str ('user' or 'model')
|
|
if self.content and len(self.content) == 1 and isinstance(self.content[0], TextContent):
|
|
text_content = self.content[0].text
|
|
else:
|
|
text_content = None
|
|
|
|
if self.role != "tool" and self.name is not None:
|
|
warnings.warn(f"Using Google AI with non-null 'name' field (name={self.name} role={self.role}), not yet supported.")
|
|
|
|
if self.role == "system":
|
|
# NOTE: Gemini API doesn't have a 'system' role, use 'user' instead
|
|
# https://www.reddit.com/r/Bard/comments/1b90i8o/does_gemini_have_a_system_prompt_option_while/
|
|
google_ai_message = {
|
|
"role": "user", # NOTE: no 'system'
|
|
"parts": [{"text": text_content}],
|
|
}
|
|
|
|
elif self.role == "user":
|
|
assert all([v is not None for v in [text_content, self.role]]), vars(self)
|
|
google_ai_message = {
|
|
"role": "user",
|
|
"parts": [{"text": text_content}],
|
|
}
|
|
|
|
elif self.role == "assistant":
|
|
assert self.tool_calls is not None or text_content is not None
|
|
google_ai_message = {
|
|
"role": "model", # NOTE: different
|
|
}
|
|
|
|
# NOTE: Google AI API doesn't allow non-null content + function call
|
|
# To get around this, just two a two part message, inner thoughts first then
|
|
parts = []
|
|
if not put_inner_thoughts_in_kwargs and text_content is not None:
|
|
# NOTE: ideally we do multi-part for CoT / inner thoughts + function call, but Google AI API doesn't allow it
|
|
raise NotImplementedError
|
|
parts.append({"text": text_content})
|
|
|
|
if self.tool_calls is not None:
|
|
# NOTE: implied support for multiple calls
|
|
for tool_call in self.tool_calls:
|
|
function_name = tool_call.function.name
|
|
function_args = tool_call.function.arguments
|
|
try:
|
|
# NOTE: Google AI wants actual JSON objects, not strings
|
|
function_args = parse_json(function_args)
|
|
except:
|
|
raise UserWarning(f"Failed to parse JSON function args: {function_args}")
|
|
function_args = {"args": function_args}
|
|
|
|
if put_inner_thoughts_in_kwargs and text_content is not None:
|
|
assert "inner_thoughts" not in function_args, function_args
|
|
assert len(self.tool_calls) == 1
|
|
function_args[INNER_THOUGHTS_KWARG] = text_content
|
|
|
|
parts.append(
|
|
{
|
|
"functionCall": {
|
|
"name": function_name,
|
|
"args": function_args,
|
|
}
|
|
}
|
|
)
|
|
else:
|
|
assert text_content is not None
|
|
parts.append({"text": text_content})
|
|
google_ai_message["parts"] = parts
|
|
|
|
elif self.role == "tool":
|
|
# NOTE: Significantly different tool calling format, more similar to function calling format
|
|
assert all([v is not None for v in [self.role, self.tool_call_id]]), vars(self)
|
|
|
|
if self.name is None:
|
|
warnings.warn(f"Couldn't find function name on tool call, defaulting to tool ID instead.")
|
|
function_name = self.tool_call_id
|
|
else:
|
|
function_name = self.name
|
|
|
|
# NOTE: Google AI API wants the function response as JSON only, no string
|
|
try:
|
|
function_response = parse_json(text_content)
|
|
except:
|
|
function_response = {"function_response": text_content}
|
|
|
|
google_ai_message = {
|
|
"role": "function",
|
|
"parts": [
|
|
{
|
|
"functionResponse": {
|
|
"name": function_name,
|
|
"response": {
|
|
"name": function_name, # NOTE: name twice... why?
|
|
"content": function_response,
|
|
},
|
|
}
|
|
}
|
|
],
|
|
}
|
|
|
|
else:
|
|
raise ValueError(self.role)
|
|
|
|
# Validate that parts is never empty before returning
|
|
if "parts" not in google_ai_message or not google_ai_message["parts"]:
|
|
# If parts is empty, add a default text part
|
|
google_ai_message["parts"] = [{"text": "empty message"}]
|
|
warnings.warn(
|
|
f"Empty 'parts' detected in message with role '{self.role}'. Added default empty text part. Full message:\n{vars(self)}"
|
|
)
|
|
|
|
return google_ai_message
|
|
|
|
def to_cohere_dict(
|
|
self,
|
|
function_call_role: Optional[str] = "SYSTEM",
|
|
function_call_prefix: Optional[str] = "[CHATBOT called function]",
|
|
function_response_role: Optional[str] = "SYSTEM",
|
|
function_response_prefix: Optional[str] = "[CHATBOT function returned]",
|
|
inner_thoughts_as_kwarg: Optional[bool] = False,
|
|
) -> List[dict]:
|
|
"""
|
|
Cohere chat_history dicts only have 'role' and 'message' fields
|
|
"""
|
|
|
|
# NOTE: returns a list of dicts so that we can convert:
|
|
# assistant [cot]: "I'll send a message"
|
|
# assistant [func]: send_message("hi")
|
|
# tool: {'status': 'OK'}
|
|
# to:
|
|
# CHATBOT.text: "I'll send a message"
|
|
# SYSTEM.text: [CHATBOT called function] send_message("hi")
|
|
# SYSTEM.text: [CHATBOT function returned] {'status': 'OK'}
|
|
|
|
# TODO: update this prompt style once guidance from Cohere on
|
|
# embedded function calls in multi-turn conversation become more clear
|
|
if self.content and len(self.content) == 1 and isinstance(self.content[0], TextContent):
|
|
text_content = self.content[0].text
|
|
else:
|
|
text_content = None
|
|
if self.role == "system":
|
|
"""
|
|
The chat_history parameter should not be used for SYSTEM messages in most cases.
|
|
Instead, to add a SYSTEM role message at the beginning of a conversation, the preamble parameter should be used.
|
|
"""
|
|
raise UserWarning(f"role 'system' messages should go in 'preamble' field for Cohere API")
|
|
|
|
elif self.role == "user":
|
|
assert all([v is not None for v in [text_content, self.role]]), vars(self)
|
|
cohere_message = [
|
|
{
|
|
"role": "USER",
|
|
"message": text_content,
|
|
}
|
|
]
|
|
|
|
elif self.role == "assistant":
|
|
# NOTE: we may break this into two message - an inner thought and a function call
|
|
# Optionally, we could just make this a function call with the inner thought inside
|
|
assert self.tool_calls is not None or text_content is not None
|
|
|
|
if text_content and self.tool_calls:
|
|
if inner_thoughts_as_kwarg:
|
|
raise NotImplementedError
|
|
cohere_message = [
|
|
{
|
|
"role": "CHATBOT",
|
|
"message": text_content,
|
|
},
|
|
]
|
|
for tc in self.tool_calls:
|
|
function_name = tc.function["name"]
|
|
function_args = parse_json(tc.function["arguments"])
|
|
function_args_str = ",".join([f"{k}={v}" for k, v in function_args.items()])
|
|
function_call_text = f"{function_name}({function_args_str})"
|
|
cohere_message.append(
|
|
{
|
|
"role": function_call_role,
|
|
"message": f"{function_call_prefix} {function_call_text}",
|
|
}
|
|
)
|
|
elif not text_content and self.tool_calls:
|
|
cohere_message = []
|
|
for tc in self.tool_calls:
|
|
# TODO better way to pack?
|
|
function_call_text = json_dumps(tc.to_dict())
|
|
cohere_message.append(
|
|
{
|
|
"role": function_call_role,
|
|
"message": f"{function_call_prefix} {function_call_text}",
|
|
}
|
|
)
|
|
elif text_content and not self.tool_calls:
|
|
cohere_message = [
|
|
{
|
|
"role": "CHATBOT",
|
|
"message": text_content,
|
|
}
|
|
]
|
|
else:
|
|
raise ValueError("Message does not have content nor tool_calls")
|
|
|
|
elif self.role == "tool":
|
|
assert all([v is not None for v in [self.role, self.tool_call_id]]), vars(self)
|
|
function_response_text = text_content
|
|
cohere_message = [
|
|
{
|
|
"role": function_response_role,
|
|
"message": f"{function_response_prefix} {function_response_text}",
|
|
}
|
|
]
|
|
|
|
else:
|
|
raise ValueError(self.role)
|
|
|
|
return cohere_message
|
|
|
|
@staticmethod
|
|
def generate_otid_from_id(message_id: str, index: int) -> str:
|
|
"""
|
|
Convert message id to bits and change the list bit to the index
|
|
"""
|
|
if not 0 <= index < 128:
|
|
raise ValueError("Index must be between 0 and 127")
|
|
|
|
message_uuid = message_id.replace("message-", "")
|
|
uuid_int = int(message_uuid.replace("-", ""), 16)
|
|
|
|
# Clear last 7 bits and set them to index; supports up to 128 unique indices
|
|
uuid_int = (uuid_int & ~0x7F) | (index & 0x7F)
|
|
|
|
hex_str = f"{uuid_int:032x}"
|
|
return f"{hex_str[:8]}-{hex_str[8:12]}-{hex_str[12:16]}-{hex_str[16:20]}-{hex_str[20:]}"
|
|
|
|
|
|
class ToolReturn(BaseModel):
|
|
status: Literal["success", "error"] = Field(..., description="The status of the tool call")
|
|
stdout: Optional[List[str]] = Field(None, description="Captured stdout (e.g. prints, logs) from the tool invocation")
|
|
stderr: Optional[List[str]] = Field(None, description="Captured stderr from the tool invocation")
|