mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
147 lines
5.3 KiB
Python
147 lines
5.3 KiB
Python
from typing import List, Optional
|
|
|
|
from fastapi import APIRouter, Body, Depends, Header
|
|
from fastapi.exceptions import HTTPException
|
|
from starlette.requests import Request
|
|
|
|
from letta.agents.letta_agent_batch import LettaAgentBatch
|
|
from letta.log import get_logger
|
|
from letta.orm.errors import NoResultFound
|
|
from letta.schemas.job import BatchJob, JobStatus, JobType, JobUpdate
|
|
from letta.schemas.letta_request import CreateBatch
|
|
from letta.server.rest_api.utils import get_letta_server
|
|
from letta.server.server import SyncServer
|
|
|
|
router = APIRouter(prefix="/messages", tags=["messages"])
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
# Batch APIs
|
|
|
|
|
|
@router.post(
|
|
"/batches",
|
|
response_model=BatchJob,
|
|
operation_id="create_messages_batch",
|
|
)
|
|
async def create_messages_batch(
|
|
request: Request,
|
|
payload: CreateBatch = Body(..., description="Messages and config for all agents"),
|
|
server: SyncServer = Depends(get_letta_server),
|
|
actor_id: Optional[str] = Header(None, alias="user_id"),
|
|
):
|
|
"""
|
|
Submit a batch of agent messages for asynchronous processing.
|
|
Creates a job that will fan out messages to all listed agents and process them in parallel.
|
|
"""
|
|
# Reject requests greater than 256Mbs
|
|
max_bytes = 256 * 1024 * 1024
|
|
content_length = request.headers.get("content-length")
|
|
if content_length:
|
|
length = int(content_length)
|
|
if length > max_bytes:
|
|
raise HTTPException(status_code=413, detail=f"Request too large ({length} bytes). Max is {max_bytes} bytes.")
|
|
|
|
actor = server.user_manager.get_user_or_default(user_id=actor_id)
|
|
batch_job = BatchJob(
|
|
user_id=actor.id,
|
|
status=JobStatus.running,
|
|
metadata={
|
|
"job_type": "batch_messages",
|
|
},
|
|
callback_url=str(payload.callback_url),
|
|
)
|
|
|
|
try:
|
|
batch_job = server.job_manager.create_job(pydantic_job=batch_job, actor=actor)
|
|
|
|
# create the batch runner
|
|
batch_runner = LettaAgentBatch(
|
|
message_manager=server.message_manager,
|
|
agent_manager=server.agent_manager,
|
|
block_manager=server.block_manager,
|
|
passage_manager=server.passage_manager,
|
|
batch_manager=server.batch_manager,
|
|
sandbox_config_manager=server.sandbox_config_manager,
|
|
job_manager=server.job_manager,
|
|
actor=actor,
|
|
)
|
|
await batch_runner.step_until_request(batch_requests=payload.requests, letta_batch_job_id=batch_job.id)
|
|
|
|
# TODO: update run metadata
|
|
except Exception as e:
|
|
import traceback
|
|
|
|
print("Error creating batch job", e)
|
|
traceback.print_exc()
|
|
|
|
# mark job as failed
|
|
server.job_manager.update_job_by_id(job_id=batch_job.id, job=BatchJob(status=JobStatus.failed), actor=actor)
|
|
raise
|
|
return batch_job
|
|
|
|
|
|
@router.get("/batches/{batch_id}", response_model=BatchJob, operation_id="retrieve_batch_run")
|
|
async def retrieve_batch_run(
|
|
batch_id: str,
|
|
actor_id: Optional[str] = Header(None, alias="user_id"),
|
|
server: "SyncServer" = Depends(get_letta_server),
|
|
):
|
|
"""
|
|
Get the status of a batch run.
|
|
"""
|
|
actor = server.user_manager.get_user_or_default(user_id=actor_id)
|
|
|
|
try:
|
|
job = server.job_manager.get_job_by_id(job_id=batch_id, actor=actor)
|
|
return BatchJob.from_job(job)
|
|
except NoResultFound:
|
|
raise HTTPException(status_code=404, detail="Batch not found")
|
|
|
|
|
|
@router.get("/batches", response_model=List[BatchJob], operation_id="list_batch_runs")
|
|
async def list_batch_runs(
|
|
actor_id: Optional[str] = Header(None, alias="user_id"),
|
|
server: "SyncServer" = Depends(get_letta_server),
|
|
):
|
|
"""
|
|
List all batch runs.
|
|
"""
|
|
# TODO: filter
|
|
actor = server.user_manager.get_user_or_default(user_id=actor_id)
|
|
|
|
jobs = server.job_manager.list_jobs(actor=actor, statuses=[JobStatus.created, JobStatus.running], job_type=JobType.BATCH)
|
|
return [BatchJob.from_job(job) for job in jobs]
|
|
|
|
|
|
@router.patch("/batches/{batch_id}/cancel", operation_id="cancel_batch_run")
|
|
async def cancel_batch_run(
|
|
batch_id: str,
|
|
server: "SyncServer" = Depends(get_letta_server),
|
|
actor_id: Optional[str] = Header(None, alias="user_id"),
|
|
):
|
|
"""
|
|
Cancel a batch run.
|
|
"""
|
|
actor = server.user_manager.get_user_or_default(user_id=actor_id)
|
|
|
|
try:
|
|
job = server.job_manager.get_job_by_id(job_id=batch_id, actor=actor)
|
|
job = server.job_manager.update_job_by_id(job_id=job.id, job_update=JobUpdate(status=JobStatus.cancelled), actor=actor)
|
|
|
|
# Get related llm batch jobs
|
|
llm_batch_jobs = server.batch_manager.list_llm_batch_jobs(letta_batch_id=job.id, actor=actor)
|
|
for llm_batch_job in llm_batch_jobs:
|
|
if llm_batch_job.status in {JobStatus.running, JobStatus.created}:
|
|
# TODO: Extend to providers beyond anthropic
|
|
# TODO: For now, we only support anthropic
|
|
# Cancel the job
|
|
anthropic_batch_id = llm_batch_job.create_batch_response.id
|
|
await server.anthropic_async_client.messages.batches.cancel(anthropic_batch_id)
|
|
|
|
# Update all the batch_job statuses
|
|
server.batch_manager.update_llm_batch_status(llm_batch_id=llm_batch_job.id, status=JobStatus.cancelled, actor=actor)
|
|
except NoResultFound:
|
|
raise HTTPException(status_code=404, detail="Run not found")
|