MemGPT/letta/services/tool_executor/tool_execution_manager.py

121 lines
4.4 KiB
Python

import traceback
from typing import Any, Dict, Optional, Type
from letta.log import get_logger
from letta.orm.enums import ToolType
from letta.schemas.agent import AgentState
from letta.schemas.sandbox_config import SandboxConfig
from letta.schemas.tool import Tool
from letta.schemas.tool_execution_result import ToolExecutionResult
from letta.schemas.user import User
from letta.services.tool_executor.tool_executor import (
ExternalComposioToolExecutor,
ExternalMCPToolExecutor,
LettaCoreToolExecutor,
LettaMultiAgentToolExecutor,
SandboxToolExecutor,
ToolExecutor,
)
from letta.tracing import trace_method
from letta.utils import get_friendly_error_msg
class ToolExecutorFactory:
"""Factory for creating appropriate tool executors based on tool type."""
_executor_map: Dict[ToolType, Type[ToolExecutor]] = {
ToolType.LETTA_CORE: LettaCoreToolExecutor,
ToolType.LETTA_MEMORY_CORE: LettaCoreToolExecutor,
ToolType.LETTA_SLEEPTIME_CORE: LettaCoreToolExecutor,
ToolType.LETTA_MULTI_AGENT_CORE: LettaMultiAgentToolExecutor,
ToolType.EXTERNAL_COMPOSIO: ExternalComposioToolExecutor,
ToolType.EXTERNAL_MCP: ExternalMCPToolExecutor,
}
@classmethod
def get_executor(cls, tool_type: ToolType) -> ToolExecutor:
"""Get the appropriate executor for the given tool type."""
executor_class = cls._executor_map.get(tool_type, SandboxToolExecutor)
return executor_class()
class ToolExecutionManager:
"""Manager class for tool execution operations."""
def __init__(
self,
agent_state: AgentState,
actor: User,
sandbox_config: Optional[SandboxConfig] = None,
sandbox_env_vars: Optional[Dict[str, Any]] = None,
):
self.agent_state = agent_state
self.logger = get_logger(__name__)
self.actor = actor
self.sandbox_config = sandbox_config
self.sandbox_env_vars = sandbox_env_vars
def execute_tool(self, function_name: str, function_args: dict, tool: Tool) -> ToolExecutionResult:
"""
Execute a tool and persist any state changes.
Args:
function_name: Name of the function to execute
function_args: Arguments to pass to the function
tool: Tool object containing metadata about the tool
Returns:
Tuple containing the function response and sandbox run result (if applicable)
"""
try:
executor = ToolExecutorFactory.get_executor(tool.tool_type)
return executor.execute(
function_name,
function_args,
self.agent_state,
tool,
self.actor,
self.sandbox_config,
self.sandbox_env_vars,
)
except Exception as e:
self.logger.error(f"Error executing tool {function_name}: {str(e)}")
error_message = get_friendly_error_msg(
function_name=function_name,
exception_name=type(e).__name__,
exception_message=str(e),
)
return ToolExecutionResult(
status="error",
func_return=error_message,
stderr=[traceback.format_exc()],
)
@trace_method
async def execute_tool_async(self, function_name: str, function_args: dict, tool: Tool) -> ToolExecutionResult:
"""
Execute a tool asynchronously and persist any state changes.
"""
try:
executor = ToolExecutorFactory.get_executor(tool.tool_type)
# TODO: Extend this async model to composio
if isinstance(executor, SandboxToolExecutor):
result = await executor.execute(function_name, function_args, self.agent_state, tool, self.actor)
else:
result = executor.execute(function_name, function_args, self.agent_state, tool, self.actor)
return result
except Exception as e:
self.logger.error(f"Error executing tool {function_name}: {str(e)}")
error_message = get_friendly_error_msg(
function_name=function_name,
exception_name=type(e).__name__,
exception_message=str(e),
)
return ToolExecutionResult(
status="error",
func_return=error_message,
stderr=[traceback.format_exc()],
)