mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
121 lines
4.4 KiB
Python
121 lines
4.4 KiB
Python
import traceback
|
|
from typing import Any, Dict, Optional, Type
|
|
|
|
from letta.log import get_logger
|
|
from letta.orm.enums import ToolType
|
|
from letta.schemas.agent import AgentState
|
|
from letta.schemas.sandbox_config import SandboxConfig
|
|
from letta.schemas.tool import Tool
|
|
from letta.schemas.tool_execution_result import ToolExecutionResult
|
|
from letta.schemas.user import User
|
|
from letta.services.tool_executor.tool_executor import (
|
|
ExternalComposioToolExecutor,
|
|
ExternalMCPToolExecutor,
|
|
LettaCoreToolExecutor,
|
|
LettaMultiAgentToolExecutor,
|
|
SandboxToolExecutor,
|
|
ToolExecutor,
|
|
)
|
|
from letta.tracing import trace_method
|
|
from letta.utils import get_friendly_error_msg
|
|
|
|
|
|
class ToolExecutorFactory:
|
|
"""Factory for creating appropriate tool executors based on tool type."""
|
|
|
|
_executor_map: Dict[ToolType, Type[ToolExecutor]] = {
|
|
ToolType.LETTA_CORE: LettaCoreToolExecutor,
|
|
ToolType.LETTA_MEMORY_CORE: LettaCoreToolExecutor,
|
|
ToolType.LETTA_SLEEPTIME_CORE: LettaCoreToolExecutor,
|
|
ToolType.LETTA_MULTI_AGENT_CORE: LettaMultiAgentToolExecutor,
|
|
ToolType.EXTERNAL_COMPOSIO: ExternalComposioToolExecutor,
|
|
ToolType.EXTERNAL_MCP: ExternalMCPToolExecutor,
|
|
}
|
|
|
|
@classmethod
|
|
def get_executor(cls, tool_type: ToolType) -> ToolExecutor:
|
|
"""Get the appropriate executor for the given tool type."""
|
|
executor_class = cls._executor_map.get(tool_type, SandboxToolExecutor)
|
|
return executor_class()
|
|
|
|
|
|
class ToolExecutionManager:
|
|
"""Manager class for tool execution operations."""
|
|
|
|
def __init__(
|
|
self,
|
|
agent_state: AgentState,
|
|
actor: User,
|
|
sandbox_config: Optional[SandboxConfig] = None,
|
|
sandbox_env_vars: Optional[Dict[str, Any]] = None,
|
|
):
|
|
self.agent_state = agent_state
|
|
self.logger = get_logger(__name__)
|
|
self.actor = actor
|
|
self.sandbox_config = sandbox_config
|
|
self.sandbox_env_vars = sandbox_env_vars
|
|
|
|
def execute_tool(self, function_name: str, function_args: dict, tool: Tool) -> ToolExecutionResult:
|
|
"""
|
|
Execute a tool and persist any state changes.
|
|
|
|
Args:
|
|
function_name: Name of the function to execute
|
|
function_args: Arguments to pass to the function
|
|
tool: Tool object containing metadata about the tool
|
|
|
|
Returns:
|
|
Tuple containing the function response and sandbox run result (if applicable)
|
|
"""
|
|
try:
|
|
executor = ToolExecutorFactory.get_executor(tool.tool_type)
|
|
return executor.execute(
|
|
function_name,
|
|
function_args,
|
|
self.agent_state,
|
|
tool,
|
|
self.actor,
|
|
self.sandbox_config,
|
|
self.sandbox_env_vars,
|
|
)
|
|
|
|
except Exception as e:
|
|
self.logger.error(f"Error executing tool {function_name}: {str(e)}")
|
|
error_message = get_friendly_error_msg(
|
|
function_name=function_name,
|
|
exception_name=type(e).__name__,
|
|
exception_message=str(e),
|
|
)
|
|
return ToolExecutionResult(
|
|
status="error",
|
|
func_return=error_message,
|
|
stderr=[traceback.format_exc()],
|
|
)
|
|
|
|
@trace_method
|
|
async def execute_tool_async(self, function_name: str, function_args: dict, tool: Tool) -> ToolExecutionResult:
|
|
"""
|
|
Execute a tool asynchronously and persist any state changes.
|
|
"""
|
|
try:
|
|
executor = ToolExecutorFactory.get_executor(tool.tool_type)
|
|
# TODO: Extend this async model to composio
|
|
if isinstance(executor, SandboxToolExecutor):
|
|
result = await executor.execute(function_name, function_args, self.agent_state, tool, self.actor)
|
|
else:
|
|
result = executor.execute(function_name, function_args, self.agent_state, tool, self.actor)
|
|
return result
|
|
|
|
except Exception as e:
|
|
self.logger.error(f"Error executing tool {function_name}: {str(e)}")
|
|
error_message = get_friendly_error_msg(
|
|
function_name=function_name,
|
|
exception_name=type(e).__name__,
|
|
exception_message=str(e),
|
|
)
|
|
return ToolExecutionResult(
|
|
status="error",
|
|
func_return=error_message,
|
|
stderr=[traceback.format_exc()],
|
|
)
|