MemGPT/letta/services/tool_sandbox/base.py

208 lines
8.1 KiB
Python

import ast
import base64
import pickle
import uuid
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, Tuple
from letta.functions.helpers import generate_model_from_args_json_schema
from letta.schemas.agent import AgentState
from letta.schemas.sandbox_config import SandboxConfig
from letta.schemas.tool import Tool
from letta.schemas.tool_execution_result import ToolExecutionResult
from letta.services.helpers.tool_execution_helper import add_imports_and_pydantic_schemas_for_args
from letta.services.sandbox_config_manager import SandboxConfigManager
from letta.services.tool_manager import ToolManager
class AsyncToolSandboxBase(ABC):
NAMESPACE = uuid.NAMESPACE_DNS
LOCAL_SANDBOX_RESULT_START_MARKER = str(uuid.uuid5(NAMESPACE, "local-sandbox-result-start-marker"))
LOCAL_SANDBOX_RESULT_END_MARKER = str(uuid.uuid5(NAMESPACE, "local-sandbox-result-end-marker"))
LOCAL_SANDBOX_RESULT_VAR_NAME = "result_ZQqiequkcFwRwwGQMqkt"
def __init__(
self,
tool_name: str,
args: dict,
user,
tool_object: Optional[Tool] = None,
sandbox_config: Optional[SandboxConfig] = None,
sandbox_env_vars: Optional[Dict[str, Any]] = None,
):
self.tool_name = tool_name
self.args = args
self.user = user
self.tool = tool_object or ToolManager().get_tool_by_name(tool_name=tool_name, actor=self.user)
if self.tool is None:
raise ValueError(
f"Agent attempted to invoke tool {self.tool_name} that does not exist for organization {self.user.organization_id}"
)
# Store provided values or create manager to fetch them later
self.provided_sandbox_config = sandbox_config
self.provided_sandbox_env_vars = sandbox_env_vars
# Only create the manager if we need to (lazy initialization)
self._sandbox_config_manager = None
# See if we should inject agent_state or not based on the presence of the "agent_state" arg
if "agent_state" in self.parse_function_arguments(self.tool.source_code, self.tool.name):
self.inject_agent_state = True
else:
self.inject_agent_state = False
# Lazily initialize the manager only when needed
@property
def sandbox_config_manager(self):
if self._sandbox_config_manager is None:
self._sandbox_config_manager = SandboxConfigManager()
return self._sandbox_config_manager
@abstractmethod
async def run(
self,
agent_state: Optional[AgentState] = None,
additional_env_vars: Optional[Dict] = None,
) -> ToolExecutionResult:
"""
Run the tool in a sandbox environment asynchronously.
Must be implemented by subclasses.
"""
raise NotImplementedError
def generate_execution_script(self, agent_state: Optional[AgentState], wrap_print_with_markers: bool = False) -> str:
"""
Generate code to run inside of execution sandbox.
Serialize the agent state and arguments, call the tool,
then base64-encode/pickle the result.
"""
code = "from typing import *\n"
code += "import pickle\n"
code += "import sys\n"
code += "import base64\n"
# Additional imports to support agent state
if self.inject_agent_state:
code += "import letta\n"
code += "from letta import * \n"
# Add schema code if available
if self.tool.args_json_schema:
schema_code = add_imports_and_pydantic_schemas_for_args(self.tool.args_json_schema)
if "from __future__ import annotations" in schema_code:
schema_code = schema_code.replace("from __future__ import annotations", "").lstrip()
code = "from __future__ import annotations\n\n" + code
code += schema_code + "\n"
# Load the agent state
if self.inject_agent_state:
agent_state_pickle = pickle.dumps(agent_state)
code += f"agent_state = pickle.loads({agent_state_pickle})\n"
else:
code += "agent_state = None\n"
# Initialize arguments
if self.tool.args_json_schema:
args_schema = generate_model_from_args_json_schema(self.tool.args_json_schema)
code += f"args_object = {args_schema.__name__}(**{self.args})\n"
for param in self.args:
code += f"{param} = args_object.{param}\n"
else:
for param in self.args:
code += self.initialize_param(param, self.args[param])
# Insert the tool's source code
code += "\n" + self.tool.source_code + "\n"
# Invoke the function and store the result in a global variable
code += (
f"{self.LOCAL_SANDBOX_RESULT_VAR_NAME}" + ' = {"results": ' + self.invoke_function_call() + ', "agent_state": agent_state}\n'
)
code += (
f"{self.LOCAL_SANDBOX_RESULT_VAR_NAME} = base64.b64encode("
f"pickle.dumps({self.LOCAL_SANDBOX_RESULT_VAR_NAME})"
").decode('utf-8')\n"
)
if wrap_print_with_markers:
code += f"sys.stdout.write('{self.LOCAL_SANDBOX_RESULT_START_MARKER}')\n"
code += f"sys.stdout.write(str({self.LOCAL_SANDBOX_RESULT_VAR_NAME}))\n"
code += f"sys.stdout.write('{self.LOCAL_SANDBOX_RESULT_END_MARKER}')\n"
else:
code += f"{self.LOCAL_SANDBOX_RESULT_VAR_NAME}\n"
return code
def _convert_param_to_value(self, param_type: str, raw_value: str) -> str:
"""
Convert parameter to Python code representation based on JSON schema type.
"""
if param_type == "string":
# Safely inject a Python string via pickle
value = "pickle.loads(" + str(pickle.dumps(raw_value)) + ")"
elif param_type in ["integer", "boolean", "number", "array", "object"]:
# This is simplistic. In real usage, ensure correct type-casting or sanitization.
value = raw_value
else:
raise TypeError(f"Unsupported type: {param_type}, raw_value={raw_value}")
return str(value)
def initialize_param(self, name: str, raw_value: str) -> str:
"""
Produce code for initializing a single parameter in the generated script.
"""
params = self.tool.json_schema["parameters"]["properties"]
spec = params.get(name)
if spec is None:
# Possibly an extra param like 'self' that we ignore
return ""
param_type = spec.get("type")
if param_type is None and spec.get("parameters"):
param_type = spec["parameters"].get("type")
value = self._convert_param_to_value(param_type, raw_value)
return f"{name} = {value}\n"
def invoke_function_call(self) -> str:
"""
Generate the function call code string with the appropriate arguments.
"""
kwargs = []
for name in self.args:
if name in self.tool.json_schema["parameters"]["properties"]:
kwargs.append(name)
param_list = [f"{arg}={arg}" for arg in kwargs]
if self.inject_agent_state:
param_list.append("agent_state=agent_state")
params = ", ".join(param_list)
func_call_str = self.tool.name + "(" + params + ")"
return func_call_str
def parse_best_effort(self, text: str) -> Tuple[Any, Optional[AgentState]]:
"""
Decode and unpickle the result from the function execution if possible.
Returns (function_return_value, agent_state).
"""
if not text:
return None, None
result = pickle.loads(base64.b64decode(text))
agent_state = result["agent_state"]
return result["results"], agent_state
def parse_function_arguments(self, source_code: str, tool_name: str):
"""Get arguments of a function from its source code"""
tree = ast.parse(source_code)
args = []
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef) and node.name == tool_name:
for arg in node.args.args:
args.append(arg.arg)
return args