MemGPT/letta/services/tool_sandbox/e2b_sandbox.py

138 lines
6.0 KiB
Python

from typing import Any, Dict, Optional
from letta.log import get_logger
from letta.schemas.agent import AgentState
from letta.schemas.sandbox_config import SandboxConfig, SandboxType
from letta.schemas.tool import Tool
from letta.schemas.tool_execution_result import ToolExecutionResult
from letta.services.tool_sandbox.base import AsyncToolSandboxBase
from letta.utils import get_friendly_error_msg
logger = get_logger(__name__)
class AsyncToolSandboxE2B(AsyncToolSandboxBase):
METADATA_CONFIG_STATE_KEY = "config_state"
def __init__(
self,
tool_name: str,
args: dict,
user,
force_recreate=True,
tool_object: Optional[Tool] = None,
sandbox_config: Optional[SandboxConfig] = None,
sandbox_env_vars: Optional[Dict[str, Any]] = None,
):
super().__init__(tool_name, args, user, tool_object, sandbox_config=sandbox_config, sandbox_env_vars=sandbox_env_vars)
self.force_recreate = force_recreate
async def run(
self,
agent_state: Optional[AgentState] = None,
additional_env_vars: Optional[Dict] = None,
) -> ToolExecutionResult:
"""
Run the tool in a sandbox environment asynchronously,
*always* using a subprocess for execution.
"""
result = await self.run_e2b_sandbox(agent_state=agent_state, additional_env_vars=additional_env_vars)
# Simple console logging for demonstration
for log_line in (result.stdout or []) + (result.stderr or []):
print(f"Tool execution log: {log_line}")
return result
async def run_e2b_sandbox(
self, agent_state: Optional[AgentState] = None, additional_env_vars: Optional[Dict] = None
) -> ToolExecutionResult:
if self.provided_sandbox_config:
sbx_config = self.provided_sandbox_config
else:
sbx_config = self.sandbox_config_manager.get_or_create_default_sandbox_config(sandbox_type=SandboxType.E2B, actor=self.user)
# TODO: So this defaults to force recreating always
# TODO: Eventually, provision one sandbox PER agent, and that agent re-uses that one specifically
e2b_sandbox = await self.create_e2b_sandbox_with_metadata_hash(sandbox_config=sbx_config)
logger.info(f"E2B Sandbox configurations: {sbx_config}")
logger.info(f"E2B Sandbox ID: {e2b_sandbox.sandbox_id}")
# TODO: This only makes sense if we re-use sandboxes
# # Since this sandbox was used, we extend its lifecycle by the timeout
# await sbx.set_timeout(sbx_config.get_e2b_config().timeout)
# Get environment variables for the sandbox
# TODO: We set limit to 100 here, but maybe we want it uncapped? Realistically this should be fine.
env_vars = {}
if self.provided_sandbox_env_vars:
env_vars.update(self.provided_sandbox_env_vars)
else:
db_env_vars = self.sandbox_config_manager.get_sandbox_env_vars_as_dict(
sandbox_config_id=sbx_config.id, actor=self.user, limit=100
)
env_vars.update(db_env_vars)
# Get environment variables for this agent specifically
if agent_state:
env_vars.update(agent_state.get_agent_env_vars_as_dict())
# Finally, get any that are passed explicitly into the `run` function call
if additional_env_vars:
env_vars.update(additional_env_vars)
code = self.generate_execution_script(agent_state=agent_state)
execution = await e2b_sandbox.run_code(code, envs=env_vars)
if execution.results:
func_return, agent_state = self.parse_best_effort(execution.results[0].text)
elif execution.error:
logger.error(f"Executing tool {self.tool_name} raised a {execution.error.name} with message: \n{execution.error.value}")
logger.error(f"Traceback from e2b sandbox: \n{execution.error.traceback}")
func_return = get_friendly_error_msg(
function_name=self.tool_name, exception_name=execution.error.name, exception_message=execution.error.value
)
execution.logs.stderr.append(execution.error.traceback)
else:
raise ValueError(f"Tool {self.tool_name} returned execution with None")
return ToolExecutionResult(
func_return=func_return,
agent_state=agent_state,
stdout=execution.logs.stdout,
stderr=execution.logs.stderr,
status="error" if execution.error else "success",
sandbox_config_fingerprint=sbx_config.fingerprint(),
)
def parse_exception_from_e2b_execution(self, e2b_execution: "Execution") -> Exception:
builtins_dict = __builtins__ if isinstance(__builtins__, dict) else vars(__builtins__)
# Dynamically fetch the exception class from builtins, defaulting to Exception if not found
exception_class = builtins_dict.get(e2b_execution.error.name, Exception)
return exception_class(e2b_execution.error.value)
async def create_e2b_sandbox_with_metadata_hash(self, sandbox_config: SandboxConfig) -> "Sandbox":
from e2b_code_interpreter import AsyncSandbox
state_hash = sandbox_config.fingerprint()
e2b_config = sandbox_config.get_e2b_config()
if e2b_config.template:
sbx = await AsyncSandbox.create(sandbox_config.get_e2b_config().template, metadata={self.METADATA_CONFIG_STATE_KEY: state_hash})
else:
# no template
sbx = await AsyncSandbox.create(
metadata={self.METADATA_CONFIG_STATE_KEY: state_hash}, **e2b_config.model_dump(exclude={"pip_requirements"})
)
# install pip requirements
if e2b_config.pip_requirements:
for package in e2b_config.pip_requirements:
await sbx.commands.run(f"pip install {package}")
return sbx
async def list_running_e2b_sandboxes(self):
from e2b_code_interpreter import AsyncSandbox
# List running sandboxes and access metadata.
return await AsyncSandbox.list()