MemGPT/letta/functions/ast_parsers.py
2025-03-03 14:50:50 -08:00

168 lines
5.6 KiB
Python

import ast
import json
from typing import Dict, Optional, Tuple
from letta.errors import LettaToolCreateError
# Registry of known types for annotation resolution
BUILTIN_TYPES = {
"int": int,
"float": float,
"str": str,
"dict": dict,
"list": list,
"set": set,
"tuple": tuple,
"bool": bool,
}
def resolve_type(annotation: str):
"""
Resolve a type annotation string into a Python type.
Args:
annotation (str): The annotation string (e.g., 'int', 'list', etc.).
Returns:
type: The corresponding Python type.
Raises:
ValueError: If the annotation is unsupported or invalid.
"""
if annotation in BUILTIN_TYPES:
return BUILTIN_TYPES[annotation]
try:
if annotation.startswith("list["):
inner_type = annotation[len("list[") : -1]
resolve_type(inner_type)
return list
elif annotation.startswith("dict["):
inner_types = annotation[len("dict[") : -1]
key_type, value_type = inner_types.split(",")
return dict
elif annotation.startswith("tuple["):
inner_types = annotation[len("tuple[") : -1]
[resolve_type(t.strip()) for t in inner_types.split(",")]
return tuple
parsed = ast.literal_eval(annotation)
if isinstance(parsed, type):
return parsed
raise ValueError(f"Annotation '{annotation}' is not a recognized type.")
except (ValueError, SyntaxError):
raise ValueError(f"Unsupported annotation: {annotation}")
def get_function_annotations_from_source(source_code: str, function_name: str) -> Dict[str, str]:
"""
Parse the source code to extract annotations for a given function name.
Args:
source_code (str): The Python source code containing the function.
function_name (str): The name of the function to extract annotations for.
Returns:
Dict[str, str]: A dictionary of argument names to their annotation strings.
Raises:
ValueError: If the function is not found in the source code.
"""
tree = ast.parse(source_code)
for node in ast.iter_child_nodes(tree):
if isinstance(node, ast.FunctionDef) and node.name == function_name:
annotations = {}
for arg in node.args.args:
if arg.annotation is not None:
annotation_str = ast.unparse(arg.annotation)
annotations[arg.arg] = annotation_str
return annotations
raise ValueError(f"Function '{function_name}' not found in the provided source code.")
def coerce_dict_args_by_annotations(function_args: dict, annotations: Dict[str, str]) -> dict:
"""
Coerce arguments in a dictionary to their annotated types.
Args:
function_args (dict): The original function arguments.
annotations (Dict[str, str]): Argument annotations as strings.
Returns:
dict: The updated dictionary with coerced argument types.
Raises:
ValueError: If type coercion fails for an argument.
"""
coerced_args = dict(function_args) # Shallow copy for mutation safety
for arg_name, value in coerced_args.items():
if arg_name in annotations:
annotation_str = annotations[arg_name]
try:
# Resolve the type from the annotation
arg_type = resolve_type(annotation_str)
# Handle JSON-like inputs for dict and list types
if arg_type in {dict, list} and isinstance(value, str):
try:
# First, try JSON parsing
value = json.loads(value)
except json.JSONDecodeError:
# Fall back to literal_eval for Python-specific literals
value = ast.literal_eval(value)
# Coerce the value to the resolved type
coerced_args[arg_name] = arg_type(value)
except (TypeError, ValueError, json.JSONDecodeError, SyntaxError) as e:
raise ValueError(f"Failed to coerce argument '{arg_name}' to {annotation_str}: {e}")
return coerced_args
def get_function_name_and_description(source_code: str, name: Optional[str] = None) -> Tuple[str, str]:
"""Gets the name and description for a given function source code by parsing the AST.
Args:
source_code: The source code to parse
name: Optional override for the function name
Returns:
Tuple of (function_name, docstring)
"""
try:
# Parse the source code into an AST
tree = ast.parse(source_code)
# Find the last function definition
function_def = None
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
function_def = node
if not function_def:
raise LettaToolCreateError("No function definition found in source code")
# Get the function name
function_name = name if name is not None else function_def.name
# Get the docstring if it exists
docstring = ast.get_docstring(function_def)
if not function_name:
raise LettaToolCreateError("Could not determine function name")
if not docstring:
raise LettaToolCreateError("Docstring is missing")
return function_name, docstring
except Exception as e:
raise LettaToolCreateError(f"Failed to parse function name and docstring: {str(e)}")
except Exception as e:
import traceback
traceback.print_exc()
raise LettaToolCreateError(f"Name and docstring generation failed: {str(e)}")