MemGPT/letta/functions/function_sets/base.py
2025-04-30 13:20:21 -07:00

372 lines
16 KiB
Python

from typing import Optional
from letta.agent import Agent
from letta.constants import CORE_MEMORY_LINE_NUMBER_WARNING
def send_message(self: "Agent", message: str) -> Optional[str]:
"""
Sends a message to the human user.
Args:
message (str): Message contents. All unicode (including emojis) are supported.
Returns:
Optional[str]: None is always returned as this function does not produce a response.
"""
# FIXME passing of msg_obj here is a hack, unclear if guaranteed to be the correct reference
if self.interface:
self.interface.assistant_message(message) # , msg_obj=self._messages[-1])
return None
def conversation_search(self: "Agent", query: str, page: Optional[int] = 0) -> Optional[str]:
"""
Search prior conversation history using case-insensitive string matching.
Args:
query (str): String to search for.
page (int): Allows you to page through results. Only use on a follow-up query. Defaults to 0 (first page).
Returns:
str: Query result string
"""
import math
from letta.constants import RETRIEVAL_QUERY_DEFAULT_PAGE_SIZE
from letta.helpers.json_helpers import json_dumps
if page is None or (isinstance(page, str) and page.lower().strip() == "none"):
page = 0
try:
page = int(page)
except:
raise ValueError(f"'page' argument must be an integer")
count = RETRIEVAL_QUERY_DEFAULT_PAGE_SIZE
# TODO: add paging by page number. currently cursor only works with strings.
# original: start=page * count
messages = self.message_manager.list_messages_for_agent(
agent_id=self.agent_state.id,
actor=self.user,
query_text=query,
limit=count,
)
total = len(messages)
num_pages = math.ceil(total / count) - 1 # 0 index
if len(messages) == 0:
results_str = f"No results found."
else:
results_pref = f"Showing {len(messages)} of {total} results (page {page}/{num_pages}):"
results_formatted = [message.content[0].text for message in messages]
results_str = f"{results_pref} {json_dumps(results_formatted)}"
return results_str
def archival_memory_insert(self: "Agent", content: str) -> Optional[str]:
"""
Add to archival memory. Make sure to phrase the memory contents such that it can be easily queried later.
Args:
content (str): Content to write to the memory. All unicode (including emojis) are supported.
Returns:
Optional[str]: None is always returned as this function does not produce a response.
"""
self.passage_manager.insert_passage(
agent_state=self.agent_state,
agent_id=self.agent_state.id,
text=content,
actor=self.user,
)
self.agent_manager.rebuild_system_prompt(agent_id=self.agent_state.id, actor=self.user, force=True)
return None
def archival_memory_search(self: "Agent", query: str, page: Optional[int] = 0, start: Optional[int] = 0) -> Optional[str]:
"""
Search archival memory using semantic (embedding-based) search.
Args:
query (str): String to search for.
page (Optional[int]): Allows you to page through results. Only use on a follow-up query. Defaults to 0 (first page).
start (Optional[int]): Starting index for the search results. Defaults to 0.
Returns:
str: Query result string
"""
from letta.constants import RETRIEVAL_QUERY_DEFAULT_PAGE_SIZE
if page is None or (isinstance(page, str) and page.lower().strip() == "none"):
page = 0
try:
page = int(page)
except:
raise ValueError(f"'page' argument must be an integer")
count = RETRIEVAL_QUERY_DEFAULT_PAGE_SIZE
try:
# Get results using passage manager
all_results = self.agent_manager.list_passages(
actor=self.user,
agent_id=self.agent_state.id,
query_text=query,
limit=count + start, # Request enough results to handle offset
embedding_config=self.agent_state.embedding_config,
embed_query=True,
)
# Apply pagination
end = min(count + start, len(all_results))
paged_results = all_results[start:end]
# Format results to match previous implementation
formatted_results = [{"timestamp": str(result.created_at), "content": result.text} for result in paged_results]
return formatted_results, len(formatted_results)
except Exception as e:
raise e
def core_memory_append(agent_state: "AgentState", label: str, content: str) -> Optional[str]: # type: ignore
"""
Append to the contents of core memory.
Args:
label (str): Section of the memory to be edited (persona or human).
content (str): Content to write to the memory. All unicode (including emojis) are supported.
Returns:
Optional[str]: None is always returned as this function does not produce a response.
"""
current_value = str(agent_state.memory.get_block(label).value)
new_value = current_value + "\n" + str(content)
agent_state.memory.update_block_value(label=label, value=new_value)
return None
def core_memory_replace(agent_state: "AgentState", label: str, old_content: str, new_content: str) -> Optional[str]: # type: ignore
"""
Replace the contents of core memory. To delete memories, use an empty string for new_content.
Args:
label (str): Section of the memory to be edited (persona or human).
old_content (str): String to replace. Must be an exact match.
new_content (str): Content to write to the memory. All unicode (including emojis) are supported.
Returns:
Optional[str]: None is always returned as this function does not produce a response.
"""
current_value = str(agent_state.memory.get_block(label).value)
if old_content not in current_value:
raise ValueError(f"Old content '{old_content}' not found in memory block '{label}'")
new_value = current_value.replace(str(old_content), str(new_content))
agent_state.memory.update_block_value(label=label, value=new_value)
return None
def rethink_memory(agent_state: "AgentState", new_memory: str, target_block_label: str) -> None:
"""
Rewrite memory block for the main agent, new_memory should contain all current information from the block that is not outdated or inconsistent, integrating any new information, resulting in a new memory block that is organized, readable, and comprehensive.
Args:
new_memory (str): The new memory with information integrated from the memory block. If there is no new information, then this should be the same as the content in the source block.
target_block_label (str): The name of the block to write to.
Returns:
None: None is always returned as this function does not produce a response.
"""
if agent_state.memory.get_block(target_block_label) is None:
agent_state.memory.create_block(label=target_block_label, value=new_memory)
agent_state.memory.update_block_value(label=target_block_label, value=new_memory)
return None
## Attempted v2 of sleep-time function set, meant to work better across all types
SNIPPET_LINES: int = 4
# Based off of: https://github.com/anthropics/anthropic-quickstarts/blob/main/computer-use-demo/computer_use_demo/tools/edit.py?ref=musings.yasyf.com#L154
def memory_replace(agent_state: "AgentState", label: str, old_str: str, new_str: Optional[str] = None) -> str: # type: ignore
"""
The memory_replace command allows you to replace a specific string in a memory block with a new string. This is used for making precise edits.
Args:
label (str): Section of the memory to be edited, identified by its label.
old_str (str): The text to replace (must match exactly, including whitespace and indentation).
new_str (Optional[str]): The new text to insert in place of the old text. Omit this argument to delete the old_str.
Returns:
str: The success message
"""
import re
if bool(re.search(r"\nLine \d+: ", old_str)):
raise ValueError(
"old_str contains a line number prefix, which is not allowed. Do not include line numbers when calling memory tools (line numbers are for display purposes only)."
)
if CORE_MEMORY_LINE_NUMBER_WARNING in old_str:
raise ValueError(
"old_str contains a line number warning, which is not allowed. Do not include line number information when calling memory tools (line numbers are for display purposes only)."
)
if bool(re.search(r"\nLine \d+: ", new_str)):
raise ValueError(
"new_str contains a line number prefix, which is not allowed. Do not include line numbers when calling memory tools (line numbers are for display purposes only)."
)
old_str = str(old_str).expandtabs()
new_str = str(new_str).expandtabs()
current_value = str(agent_state.memory.get_block(label).value).expandtabs()
# Check if old_str is unique in the block
occurences = current_value.count(old_str)
if occurences == 0:
raise ValueError(f"No replacement was performed, old_str `{old_str}` did not appear verbatim in memory block with label `{label}`.")
elif occurences > 1:
content_value_lines = current_value.split("\n")
lines = [idx + 1 for idx, line in enumerate(content_value_lines) if old_str in line]
raise ValueError(
f"No replacement was performed. Multiple occurrences of old_str `{old_str}` in lines {lines}. Please ensure it is unique."
)
# Replace old_str with new_str
new_value = current_value.replace(str(old_str), str(new_str))
# Write the new content to the block
agent_state.memory.update_block_value(label=label, value=new_value)
# Create a snippet of the edited section
SNIPPET_LINES = 3
replacement_line = current_value.split(old_str)[0].count("\n")
start_line = max(0, replacement_line - SNIPPET_LINES)
end_line = replacement_line + SNIPPET_LINES + new_str.count("\n")
snippet = "\n".join(new_value.split("\n")[start_line : end_line + 1])
# Prepare the success message
success_msg = f"The core memory block with label `{label}` has been edited. "
# success_msg += self._make_output(
# snippet, f"a snippet of {path}", start_line + 1
# )
# success_msg += f"A snippet of core memory block `{label}`:\n{snippet}\n"
success_msg += "Review the changes and make sure they are as expected (correct indentation, no duplicate lines, etc). Edit the memory block again if necessary."
# return None
return success_msg
def memory_insert(agent_state: "AgentState", label: str, new_str: str, insert_line: int = -1) -> Optional[str]: # type: ignore
"""
The memory_insert command allows you to insert text at a specific location in a memory block.
Args:
label (str): Section of the memory to be edited, identified by its label.
new_str (str): The text to insert.
insert_line (int): The line number after which to insert the text (0 for beginning of file). Defaults to -1 (end of the file).
Returns:
Optional[str]: None is always returned as this function does not produce a response.
"""
import re
if bool(re.search(r"\nLine \d+: ", new_str)):
raise ValueError(
"new_str contains a line number prefix, which is not allowed. Do not include line numbers when calling memory tools (line numbers are for display purposes only)."
)
if CORE_MEMORY_LINE_NUMBER_WARNING in new_str:
raise ValueError(
"new_str contains a line number warning, which is not allowed. Do not include line number information when calling memory tools (line numbers are for display purposes only)."
)
current_value = str(agent_state.memory.get_block(label).value).expandtabs()
new_str = str(new_str).expandtabs()
current_value_lines = current_value.split("\n")
n_lines = len(current_value_lines)
# Check if we're in range, from 0 (pre-line), to 1 (first line), to n_lines (last line)
if insert_line < 0 or insert_line > n_lines:
raise ValueError(
f"Invalid `insert_line` parameter: {insert_line}. It should be within the range of lines of the memory block: {[0, n_lines]}, or -1 to append to the end of the memory block."
)
# Insert the new string as a line
new_str_lines = new_str.split("\n")
new_value_lines = current_value_lines[:insert_line] + new_str_lines + current_value_lines[insert_line:]
snippet_lines = (
current_value_lines[max(0, insert_line - SNIPPET_LINES) : insert_line]
+ new_str_lines
+ current_value_lines[insert_line : insert_line + SNIPPET_LINES]
)
# Collate into the new value to update
new_value = "\n".join(new_value_lines)
snippet = "\n".join(snippet_lines)
# Write into the block
agent_state.memory.update_block_value(label=label, value=new_value)
# Prepare the success message
success_msg = f"The core memory block with label `{label}` has been edited. "
# success_msg += self._make_output(
# snippet,
# "a snippet of the edited file",
# max(1, insert_line - SNIPPET_LINES + 1),
# )
# success_msg += f"A snippet of core memory block `{label}`:\n{snippet}\n"
success_msg += "Review the changes and make sure they are as expected (correct indentation, no duplicate lines, etc). Edit the memory block again if necessary."
return success_msg
def memory_rethink(agent_state: "AgentState", label: str, new_memory: str) -> None:
"""
The memory_rethink command allows you to completely rewrite the contents of a memory block. Use this tool to make large sweeping changes (e.g. when you want to condense or reorganize the memory blocks), do NOT use this tool to make small precise edits (e.g. add or remove a line, replace a specific string, etc).
Args:
label (str): The memory block to be rewritten, identified by its label.
new_memory (str): The new memory contents with information integrated from existing memory blocks and the conversation context.
Returns:
None: None is always returned as this function does not produce a response.
"""
import re
if bool(re.search(r"\nLine \d+: ", new_memory)):
raise ValueError(
"new_memory contains a line number prefix, which is not allowed. Do not include line numbers when calling memory tools (line numbers are for display purposes only)."
)
if CORE_MEMORY_LINE_NUMBER_WARNING in new_memory:
raise ValueError(
"new_memory contains a line number warning, which is not allowed. Do not include line number information when calling memory tools (line numbers are for display purposes only)."
)
if agent_state.memory.get_block(label) is None:
agent_state.memory.create_block(label=label, value=new_memory)
agent_state.memory.update_block_value(label=label, value=new_memory)
# Prepare the success message
success_msg = f"The core memory block with label `{label}` has been edited. "
# success_msg += self._make_output(
# snippet, f"a snippet of {path}", start_line + 1
# )
# success_msg += f"A snippet of core memory block `{label}`:\n{snippet}\n"
success_msg += "Review the changes and make sure they are as expected (correct indentation, no duplicate lines, etc). Edit the memory block again if necessary."
# return None
return success_msg
def memory_finish_edits(agent_state: "AgentState") -> None: # type: ignore
"""
Call the memory_finish_edits command when you are finished making edits (integrating all new information) into the memory blocks. This function is called when the agent is done rethinking the memory.
Returns:
Optional[str]: None is always returned as this function does not produce a response.
"""
return None