MemGPT/letta/llm_api/llm_api_tools.py

528 lines
22 KiB
Python

import copy
import json
import os
import random
import time
import warnings
from typing import List, Optional, Union
import requests
from letta.constants import CLI_WARNING_PREFIX, OPENAI_CONTEXT_WINDOW_ERROR_SUBSTRING
from letta.credentials import LettaCredentials
from letta.llm_api.anthropic import anthropic_chat_completions_request
from letta.llm_api.azure_openai import (
MODEL_TO_AZURE_ENGINE,
azure_openai_chat_completions_request,
)
from letta.llm_api.cohere import cohere_chat_completions_request
from letta.llm_api.google_ai import (
convert_tools_to_google_ai_format,
google_ai_chat_completions_request,
)
from letta.llm_api.openai import (
openai_chat_completions_process_stream,
openai_chat_completions_request,
)
from letta.local_llm.chat_completion_proxy import get_chat_completion
from letta.local_llm.constants import (
INNER_THOUGHTS_KWARG,
INNER_THOUGHTS_KWARG_DESCRIPTION,
)
from letta.schemas.enums import OptionState
from letta.schemas.llm_config import LLMConfig
from letta.schemas.message import Message
from letta.schemas.openai.chat_completion_request import (
ChatCompletionRequest,
Tool,
cast_message_to_subtype,
)
from letta.schemas.openai.chat_completion_response import ChatCompletionResponse
from letta.streaming_interface import (
AgentChunkStreamingInterface,
AgentRefreshStreamingInterface,
)
from letta.utils import json_dumps
LLM_API_PROVIDER_OPTIONS = ["openai", "azure", "anthropic", "google_ai", "cohere", "local", "groq"]
# TODO update to use better types
def add_inner_thoughts_to_functions(
functions: List[dict],
inner_thoughts_key: str,
inner_thoughts_description: str,
inner_thoughts_required: bool = True,
# inner_thoughts_to_front: bool = True, TODO support sorting somewhere, probably in the to_dict?
) -> List[dict]:
"""Add an inner_thoughts kwarg to every function in the provided list"""
# return copies
new_functions = []
# functions is a list of dicts in the OpenAI schema (https://platform.openai.com/docs/api-reference/chat/create)
for function_object in functions:
function_params = function_object["parameters"]["properties"]
required_params = list(function_object["parameters"]["required"])
# if the inner thoughts arg doesn't exist, add it
if inner_thoughts_key not in function_params:
function_params[inner_thoughts_key] = {
"type": "string",
"description": inner_thoughts_description,
}
# make sure it's tagged as required
new_function_object = copy.deepcopy(function_object)
if inner_thoughts_required and inner_thoughts_key not in required_params:
required_params.append(inner_thoughts_key)
new_function_object["parameters"]["required"] = required_params
new_functions.append(new_function_object)
# return a list of copies
return new_functions
def unpack_inner_thoughts_from_kwargs(
response: ChatCompletionResponse,
inner_thoughts_key: str,
) -> ChatCompletionResponse:
"""Strip the inner thoughts out of the tool call and put it in the message content"""
if len(response.choices) == 0:
raise ValueError(f"Unpacking inner thoughts from empty response not supported")
new_choices = []
for choice in response.choices:
msg = choice.message
if msg.role == "assistant" and msg.tool_calls and len(msg.tool_calls) >= 1:
if len(msg.tool_calls) > 1:
warnings.warn(f"Unpacking inner thoughts from more than one tool call ({len(msg.tool_calls)}) is not supported")
# TODO support multiple tool calls
tool_call = msg.tool_calls[0]
try:
# Sadly we need to parse the JSON since args are in string format
func_args = dict(json.loads(tool_call.function.arguments))
if inner_thoughts_key in func_args:
# extract the inner thoughts
inner_thoughts = func_args.pop(inner_thoughts_key)
# replace the kwargs
new_choice = choice.model_copy(deep=True)
new_choice.message.tool_calls[0].function.arguments = json_dumps(func_args)
# also replace the message content
if new_choice.message.content is not None:
warnings.warn(f"Overwriting existing inner monologue ({new_choice.message.content}) with kwarg ({inner_thoughts})")
new_choice.message.content = inner_thoughts
# save copy
new_choices.append(new_choice)
else:
warnings.warn(f"Did not find inner thoughts in tool call: {str(tool_call)}")
except json.JSONDecodeError as e:
warnings.warn(f"Failed to strip inner thoughts from kwargs: {e}")
raise e
# return an updated copy
new_response = response.model_copy(deep=True)
new_response.choices = new_choices
return new_response
def is_context_overflow_error(exception: requests.exceptions.RequestException) -> bool:
"""Checks if an exception is due to context overflow (based on common OpenAI response messages)"""
from letta.utils import printd
match_string = OPENAI_CONTEXT_WINDOW_ERROR_SUBSTRING
# Backwards compatibility with openai python package/client v0.28 (pre-v1 client migration)
if match_string in str(exception):
printd(f"Found '{match_string}' in str(exception)={(str(exception))}")
return True
# Based on python requests + OpenAI REST API (/v1)
elif isinstance(exception, requests.exceptions.HTTPError):
if exception.response is not None and "application/json" in exception.response.headers.get("Content-Type", ""):
try:
error_details = exception.response.json()
if "error" not in error_details:
printd(f"HTTPError occurred, but couldn't find error field: {error_details}")
return False
else:
error_details = error_details["error"]
# Check for the specific error code
if error_details.get("code") == "context_length_exceeded":
printd(f"HTTPError occurred, caught error code {error_details.get('code')}")
return True
# Soft-check for "maximum context length" inside of the message
elif error_details.get("message") and "maximum context length" in error_details.get("message"):
printd(f"HTTPError occurred, found '{match_string}' in error message contents ({error_details})")
return True
else:
printd(f"HTTPError occurred, but unknown error message: {error_details}")
return False
except ValueError:
# JSON decoding failed
printd(f"HTTPError occurred ({exception}), but no JSON error message.")
# Generic fail
else:
return False
def retry_with_exponential_backoff(
func,
initial_delay: float = 1,
exponential_base: float = 2,
jitter: bool = True,
max_retries: int = 20,
# List of OpenAI error codes: https://github.com/openai/openai-python/blob/17ac6779958b2b74999c634c4ea4c7b74906027a/src/openai/_client.py#L227-L250
# 429 = rate limit
error_codes: tuple = (429,),
):
"""Retry a function with exponential backoff."""
def wrapper(*args, **kwargs):
pass
# Initialize variables
num_retries = 0
delay = initial_delay
# Loop until a successful response or max_retries is hit or an exception is raised
while True:
try:
return func(*args, **kwargs)
except requests.exceptions.HTTPError as http_err:
# Retry on specified errors
if http_err.response.status_code in error_codes:
# Increment retries
num_retries += 1
# Check if max retries has been reached
if num_retries > max_retries:
raise Exception(f"Maximum number of retries ({max_retries}) exceeded.")
# Increment the delay
delay *= exponential_base * (1 + jitter * random.random())
# Sleep for the delay
# printd(f"Got a rate limit error ('{http_err}') on LLM backend request, waiting {int(delay)}s then retrying...")
print(
f"{CLI_WARNING_PREFIX}Got a rate limit error ('{http_err}') on LLM backend request, waiting {int(delay)}s then retrying..."
)
time.sleep(delay)
else:
# For other HTTP errors, re-raise the exception
raise
# Raise exceptions for any errors not specified
except Exception as e:
raise e
return wrapper
@retry_with_exponential_backoff
def create(
# agent_state: AgentState,
llm_config: LLMConfig,
messages: List[Message],
user_id: Optional[str] = None, # option UUID to associate request with
functions: Optional[list] = None,
functions_python: Optional[list] = None,
function_call: str = "auto",
# hint
first_message: bool = False,
# use tool naming?
# if false, will use deprecated 'functions' style
use_tool_naming: bool = True,
# streaming?
stream: bool = False,
stream_inferface: Optional[Union[AgentRefreshStreamingInterface, AgentChunkStreamingInterface]] = None,
# TODO move to llm_config?
# if unspecified (None), default to something we've tested
inner_thoughts_in_kwargs: OptionState = OptionState.DEFAULT,
) -> ChatCompletionResponse:
"""Return response to chat completion with backoff"""
from letta.utils import printd
printd(f"Using model {llm_config.model_endpoint_type}, endpoint: {llm_config.model_endpoint}")
# TODO eventually refactor so that credentials are passed through
credentials = LettaCredentials.load()
if function_call and not functions:
printd("unsetting function_call because functions is None")
function_call = None
# openai
if llm_config.model_endpoint_type == "openai":
if inner_thoughts_in_kwargs == OptionState.DEFAULT:
# model that are known to not use `content` fields on tool calls
inner_thoughts_in_kwargs = (
"gpt-4o" in llm_config.model or "gpt-4-turbo" in llm_config.model or "gpt-3.5-turbo" in llm_config.model
)
else:
inner_thoughts_in_kwargs = True if inner_thoughts_in_kwargs == OptionState.YES else False
if not isinstance(inner_thoughts_in_kwargs, bool):
warnings.warn(f"Bad type detected: {type(inner_thoughts_in_kwargs)}")
inner_thoughts_in_kwargs = bool(inner_thoughts_in_kwargs)
if inner_thoughts_in_kwargs:
functions = add_inner_thoughts_to_functions(
functions=functions,
inner_thoughts_key=INNER_THOUGHTS_KWARG,
inner_thoughts_description=INNER_THOUGHTS_KWARG_DESCRIPTION,
)
openai_message_list = [
cast_message_to_subtype(m.to_openai_dict(put_inner_thoughts_in_kwargs=inner_thoughts_in_kwargs)) for m in messages
]
# TODO do the same for Azure?
if credentials.openai_key is None and llm_config.model_endpoint == "https://api.openai.com/v1":
# only is a problem if we are *not* using an openai proxy
raise ValueError(f"OpenAI key is missing from letta config file")
if use_tool_naming:
data = ChatCompletionRequest(
model=llm_config.model,
messages=openai_message_list,
tools=[{"type": "function", "function": f} for f in functions] if functions else None,
tool_choice=function_call,
user=str(user_id),
)
else:
data = ChatCompletionRequest(
model=llm_config.model,
messages=openai_message_list,
functions=functions,
function_call=function_call,
user=str(user_id),
)
# https://platform.openai.com/docs/guides/text-generation/json-mode
# only supported by gpt-4o, gpt-4-turbo, or gpt-3.5-turbo
if "gpt-4o" in llm_config.model or "gpt-4-turbo" in llm_config.model or "gpt-3.5-turbo" in llm_config.model:
data.response_format = {"type": "json_object"}
if "inference.memgpt.ai" in llm_config.model_endpoint:
# override user id for inference.memgpt.ai
import uuid
data.user = str(uuid.UUID(int=0))
if stream: # Client requested token streaming
data.stream = True
assert isinstance(stream_inferface, AgentChunkStreamingInterface) or isinstance(
stream_inferface, AgentRefreshStreamingInterface
), type(stream_inferface)
response = openai_chat_completions_process_stream(
url=llm_config.model_endpoint, # https://api.openai.com/v1 -> https://api.openai.com/v1/chat/completions
api_key=credentials.openai_key,
chat_completion_request=data,
stream_inferface=stream_inferface,
)
else: # Client did not request token streaming (expect a blocking backend response)
data.stream = False
if isinstance(stream_inferface, AgentChunkStreamingInterface):
stream_inferface.stream_start()
try:
response = openai_chat_completions_request(
url=llm_config.model_endpoint, # https://api.openai.com/v1 -> https://api.openai.com/v1/chat/completions
api_key=credentials.openai_key,
chat_completion_request=data,
)
finally:
if isinstance(stream_inferface, AgentChunkStreamingInterface):
stream_inferface.stream_end()
if inner_thoughts_in_kwargs:
response = unpack_inner_thoughts_from_kwargs(response=response, inner_thoughts_key=INNER_THOUGHTS_KWARG)
return response
# azure
elif llm_config.model_endpoint_type == "azure":
if stream:
raise NotImplementedError(f"Streaming not yet implemented for {llm_config.model_endpoint_type}")
azure_deployment = (
credentials.azure_deployment if credentials.azure_deployment is not None else MODEL_TO_AZURE_ENGINE[llm_config.model]
)
if use_tool_naming:
data = dict(
# NOTE: don't pass model to Azure calls, that is the deployment_id
# model=agent_config.model,
messages=[m.to_openai_dict() for m in messages],
tools=[{"type": "function", "function": f} for f in functions] if functions else None,
tool_choice=function_call,
user=str(user_id),
)
else:
data = dict(
# NOTE: don't pass model to Azure calls, that is the deployment_id
# model=agent_config.model,
messages=[m.to_openai_dict() for m in messages],
functions=functions,
function_call=function_call,
user=str(user_id),
)
return azure_openai_chat_completions_request(
resource_name=credentials.azure_endpoint,
deployment_id=azure_deployment,
api_version=credentials.azure_version,
api_key=credentials.azure_key,
data=data,
)
elif llm_config.model_endpoint_type == "google_ai":
if stream:
raise NotImplementedError(f"Streaming not yet implemented for {llm_config.model_endpoint_type}")
if not use_tool_naming:
raise NotImplementedError("Only tool calling supported on Google AI API requests")
# NOTE: until Google AI supports CoT / text alongside function calls,
# we need to put it in a kwarg (unless we want to split the message into two)
google_ai_inner_thoughts_in_kwarg = True
if functions is not None:
tools = [{"type": "function", "function": f} for f in functions]
tools = [Tool(**t) for t in tools]
tools = convert_tools_to_google_ai_format(tools, inner_thoughts_in_kwargs=google_ai_inner_thoughts_in_kwarg)
else:
tools = None
return google_ai_chat_completions_request(
inner_thoughts_in_kwargs=google_ai_inner_thoughts_in_kwarg,
service_endpoint=credentials.google_ai_service_endpoint,
model=llm_config.model,
api_key=credentials.google_ai_key,
# see structure of payload here: https://ai.google.dev/docs/function_calling
data=dict(
contents=[m.to_google_ai_dict() for m in messages],
tools=tools,
),
)
elif llm_config.model_endpoint_type == "anthropic":
if stream:
raise NotImplementedError(f"Streaming not yet implemented for {llm_config.model_endpoint_type}")
if not use_tool_naming:
raise NotImplementedError("Only tool calling supported on Anthropic API requests")
if functions is not None:
tools = [{"type": "function", "function": f} for f in functions]
tools = [Tool(**t) for t in tools]
else:
tools = None
return anthropic_chat_completions_request(
url=llm_config.model_endpoint,
api_key=credentials.anthropic_key,
data=ChatCompletionRequest(
model=llm_config.model,
messages=[cast_message_to_subtype(m.to_openai_dict()) for m in messages],
tools=[{"type": "function", "function": f} for f in functions] if functions else None,
# tool_choice=function_call,
# user=str(user_id),
# NOTE: max_tokens is required for Anthropic API
max_tokens=1024, # TODO make dynamic
),
)
elif llm_config.model_endpoint_type == "cohere":
if stream:
raise NotImplementedError(f"Streaming not yet implemented for {llm_config.model_endpoint_type}")
if not use_tool_naming:
raise NotImplementedError("Only tool calling supported on Cohere API requests")
if functions is not None:
tools = [{"type": "function", "function": f} for f in functions]
tools = [Tool(**t) for t in tools]
else:
tools = None
return cohere_chat_completions_request(
# url=llm_config.model_endpoint,
url="https://api.cohere.ai/v1", # TODO
api_key=os.getenv("COHERE_API_KEY"), # TODO remove
chat_completion_request=ChatCompletionRequest(
model="command-r-plus", # TODO
messages=[cast_message_to_subtype(m.to_openai_dict()) for m in messages],
tools=tools,
tool_choice=function_call,
# user=str(user_id),
# NOTE: max_tokens is required for Anthropic API
# max_tokens=1024, # TODO make dynamic
),
)
elif llm_config.model_endpoint_type == "groq":
if stream:
raise NotImplementedError(f"Streaming not yet implemented for Groq.")
if credentials.groq_key is None and llm_config.model_endpoint == "https://api.groq.com/openai/v1/chat/completions":
# only is a problem if we are *not* using an openai proxy
raise ValueError(f"Groq key is missing from letta config file")
tools = [{"type": "function", "function": f} for f in functions] if functions is not None else None
data = ChatCompletionRequest(
model=llm_config.model,
messages=[m.to_openai_dict() for m in messages],
tools=tools,
tool_choice=function_call,
user=str(user_id),
)
# https://console.groq.com/docs/openai
# "The following fields are currently not supported and will result in a 400 error (yikes) if they are supplied:"
assert data.top_logprobs is None
assert data.logit_bias is None
assert data.logprobs == False
assert data.n == 1
# They mention that none of the messages can have names, but it seems to not error out (for now)
data.stream = False
if isinstance(stream_inferface, AgentChunkStreamingInterface):
stream_inferface.stream_start()
try:
# groq uses the openai chat completions API, so this component should be reusable
assert credentials.groq_key is not None, "Groq key is missing"
response = openai_chat_completions_request(
url=llm_config.model_endpoint,
api_key=credentials.groq_key,
chat_completion_request=data,
)
finally:
if isinstance(stream_inferface, AgentChunkStreamingInterface):
stream_inferface.stream_end()
return response
# local model
else:
if stream:
raise NotImplementedError(f"Streaming not yet implemented for {llm_config.model_endpoint_type}")
return get_chat_completion(
model=llm_config.model,
messages=messages,
functions=functions,
functions_python=functions_python,
function_call=function_call,
context_window=llm_config.context_window,
endpoint=llm_config.model_endpoint,
endpoint_type=llm_config.model_endpoint_type,
wrapper=llm_config.model_wrapper,
user=str(user_id),
# hint
first_message=first_message,
# auth-related
auth_type=credentials.openllm_auth_type,
auth_key=credentials.openllm_key,
)