MemGPT/letta/orm/sqlalchemy_base.py
Matthew Zhou 4deaafdb49 chore: Various bug fixes (#1350)
Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
Co-authored-by: cthomas <caren@letta.com>
Co-authored-by: tarunkumark <tkksctwo@gmail.com>
Co-authored-by: Kevin Lin <klin5061@gmail.com>
Co-authored-by: Charles Packer <packercharles@gmail.com>
Co-authored-by: Miao <one.lemorage@gmail.com>
Co-authored-by: Krishnakumar R (KK) <65895020+kk-src@users.noreply.github.com>
Co-authored-by: Shubham Naik <shub@memgpt.ai>
Co-authored-by: Shubham Naik <shub@letta.com>
Co-authored-by: Will Sargent <will.sargent@gmail.com>
Co-authored-by: Shubham Naik <shubham.naik10@gmail.com>
Co-authored-by: mlong93 <35275280+mlong93@users.noreply.github.com>
Co-authored-by: Mindy Long <mindy@letta.com>
Co-authored-by: Stephan Fitzpatrick <stephan@knowsuchagency.com>
Co-authored-by: dboyliao <qmalliao@gmail.com>
Co-authored-by: Jyotirmaya Mahanta <jyotirmaya.mahanta@gmail.com>
Co-authored-by: Nicholas <102550462+ndisalvio3@users.noreply.github.com>
Co-authored-by: Tristan Morris <tristanbmorris@gmail.com>
Co-authored-by: Daniel Shin <88547237+kyuds@users.noreply.github.com>
Co-authored-by: Jindřich Šíma <67415662+JindrichSima@users.noreply.github.com>
Co-authored-by: Azin Asgarian <31479845+azinasg@users.noreply.github.com>
Co-authored-by: Connor Shorten <connorshorten300@gmail.com>
Co-authored-by: Lucas Mohallem Ferraz <ferraz.m.lucas@gmail.com>
Co-authored-by: kyuds <kyuds@everspin.co.kr>
2025-03-20 11:06:45 -07:00

630 lines
26 KiB
Python

from datetime import datetime
from enum import Enum
from functools import wraps
from pprint import pformat
from typing import TYPE_CHECKING, List, Literal, Optional, Tuple, Union
from sqlalchemy import String, and_, func, or_, select
from sqlalchemy.exc import DBAPIError, IntegrityError, TimeoutError
from sqlalchemy.orm import Mapped, Session, mapped_column
from letta.log import get_logger
from letta.orm.base import Base, CommonSqlalchemyMetaMixins
from letta.orm.errors import DatabaseTimeoutError, ForeignKeyConstraintViolationError, NoResultFound, UniqueConstraintViolationError
from letta.orm.sqlite_functions import adapt_array
if TYPE_CHECKING:
from pydantic import BaseModel
from sqlalchemy.orm import Session
logger = get_logger(__name__)
def handle_db_timeout(func):
"""Decorator to handle SQLAlchemy TimeoutError and wrap it in a custom exception."""
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except TimeoutError as e:
logger.error(f"Timeout while executing {func.__name__} with args {args} and kwargs {kwargs}: {e}")
raise DatabaseTimeoutError(message=f"Timeout occurred in {func.__name__}.", original_exception=e)
return wrapper
class AccessType(str, Enum):
ORGANIZATION = "organization"
USER = "user"
class SqlalchemyBase(CommonSqlalchemyMetaMixins, Base):
__abstract__ = True
__order_by_default__ = "created_at"
id: Mapped[str] = mapped_column(String, primary_key=True)
@classmethod
@handle_db_timeout
def list(
cls,
*,
db_session: "Session",
before: Optional[str] = None,
after: Optional[str] = None,
start_date: Optional[datetime] = None,
end_date: Optional[datetime] = None,
limit: Optional[int] = 50,
query_text: Optional[str] = None,
query_embedding: Optional[List[float]] = None,
ascending: bool = True,
tags: Optional[List[str]] = None,
match_all_tags: bool = False,
actor: Optional["User"] = None,
access: Optional[List[Literal["read", "write", "admin"]]] = ["read"],
access_type: AccessType = AccessType.ORGANIZATION,
join_model: Optional[Base] = None,
join_conditions: Optional[Union[Tuple, List]] = None,
identifier_keys: Optional[List[str]] = None,
identity_id: Optional[str] = None,
**kwargs,
) -> List["SqlalchemyBase"]:
"""
List records with before/after pagination, ordering by created_at.
Can use both before and after to fetch a window of records.
Args:
db_session: SQLAlchemy session
before: ID of item to paginate before (upper bound)
after: ID of item to paginate after (lower bound)
start_date: Filter items after this date
end_date: Filter items before this date
limit: Maximum number of items to return
query_text: Text to search for
query_embedding: Vector to search for similar embeddings
ascending: Sort direction
tags: List of tags to filter by
match_all_tags: If True, return items matching all tags. If False, match any tag.
**kwargs: Additional filters to apply
"""
if start_date and end_date and start_date > end_date:
raise ValueError("start_date must be earlier than or equal to end_date")
logger.debug(f"Listing {cls.__name__} with kwarg filters {kwargs}")
with db_session as session:
# Get the reference objects for pagination
before_obj = None
after_obj = None
if before:
before_obj = session.get(cls, before)
if not before_obj:
raise NoResultFound(f"No {cls.__name__} found with id {before}")
if after:
after_obj = session.get(cls, after)
if not after_obj:
raise NoResultFound(f"No {cls.__name__} found with id {after}")
# Validate that before comes after the after object if both are provided
if before_obj and after_obj and before_obj.created_at < after_obj.created_at:
raise ValueError("'before' reference must be later than 'after' reference")
query = select(cls)
if join_model and join_conditions:
query = query.join(join_model, and_(*join_conditions))
# Apply access predicate if actor is provided
if actor:
query = cls.apply_access_predicate(query, actor, access, access_type)
# Handle tag filtering if the model has tags
if tags and hasattr(cls, "tags"):
query = select(cls)
if match_all_tags:
# Match ALL tags - use subqueries
subquery = (
select(cls.tags.property.mapper.class_.agent_id)
.where(cls.tags.property.mapper.class_.tag.in_(tags))
.group_by(cls.tags.property.mapper.class_.agent_id)
.having(func.count() == len(tags))
)
query = query.filter(cls.id.in_(subquery))
else:
# Match ANY tag - use join and filter
query = (
query.join(cls.tags).filter(cls.tags.property.mapper.class_.tag.in_(tags)).distinct(cls.id).order_by(cls.id)
) # Deduplicate results
# select distinct primary key
query = query.distinct(cls.id).order_by(cls.id)
if identifier_keys and hasattr(cls, "identities"):
query = query.join(cls.identities).filter(cls.identities.property.mapper.class_.identifier_key.in_(identifier_keys))
# given the identity_id, we can find within the agents table any agents that have the identity_id in their identity_ids
if identity_id and hasattr(cls, "identities"):
query = query.join(cls.identities).filter(cls.identities.property.mapper.class_.id == identity_id)
# Apply filtering logic from kwargs
for key, value in kwargs.items():
if "." in key:
# Handle joined table columns
table_name, column_name = key.split(".")
joined_table = locals().get(table_name) or globals().get(table_name)
column = getattr(joined_table, column_name)
else:
# Handle columns from main table
column = getattr(cls, key)
if isinstance(value, (list, tuple, set)):
query = query.where(column.in_(value))
else:
query = query.where(column == value)
# Date range filtering
if start_date:
query = query.filter(cls.created_at > start_date)
if end_date:
query = query.filter(cls.created_at < end_date)
# Handle pagination based on before/after
if before or after:
conditions = []
if before and after:
# Window-based query - get records between before and after
conditions = [
or_(cls.created_at < before_obj.created_at, and_(cls.created_at == before_obj.created_at, cls.id < before_obj.id)),
or_(cls.created_at > after_obj.created_at, and_(cls.created_at == after_obj.created_at, cls.id > after_obj.id)),
]
else:
# Pure pagination query
if before:
conditions.append(
or_(
cls.created_at < before_obj.created_at,
and_(cls.created_at == before_obj.created_at, cls.id < before_obj.id),
)
)
if after:
conditions.append(
or_(
cls.created_at > after_obj.created_at,
and_(cls.created_at == after_obj.created_at, cls.id > after_obj.id),
)
)
if conditions:
query = query.where(and_(*conditions))
# Text search
if query_text:
if hasattr(cls, "text"):
query = query.filter(func.lower(cls.text).contains(func.lower(query_text)))
elif hasattr(cls, "name"):
# Special case for Agent model - search across name
query = query.filter(func.lower(cls.name).contains(func.lower(query_text)))
# Embedding search (for Passages)
is_ordered = False
if query_embedding:
if not hasattr(cls, "embedding"):
raise ValueError(f"Class {cls.__name__} does not have an embedding column")
from letta.settings import settings
if settings.letta_pg_uri_no_default:
# PostgreSQL with pgvector
query = query.order_by(cls.embedding.cosine_distance(query_embedding).asc())
else:
# SQLite with custom vector type
query_embedding_binary = adapt_array(query_embedding)
query = query.order_by(
func.cosine_distance(cls.embedding, query_embedding_binary).asc(),
cls.created_at.asc() if ascending else cls.created_at.desc(),
cls.id.asc(),
)
is_ordered = True
# Handle soft deletes
if hasattr(cls, "is_deleted"):
query = query.where(cls.is_deleted == False)
# Apply ordering
if not is_ordered:
if ascending:
query = query.order_by(cls.created_at.asc(), cls.id.asc())
else:
query = query.order_by(cls.created_at.desc(), cls.id.desc())
# Apply limit, adjusting for both bounds if necessary
if before and after:
# When both bounds are provided, we need to fetch enough records to satisfy
# the limit while respecting both bounds. We'll fetch more and then trim.
query = query.limit(limit * 2)
else:
query = query.limit(limit)
results = list(session.execute(query).scalars())
# If we have both bounds, take the middle portion
if before and after and len(results) > limit:
middle = len(results) // 2
start = max(0, middle - limit // 2)
end = min(len(results), start + limit)
results = results[start:end]
return results
@classmethod
@handle_db_timeout
def read(
cls,
db_session: "Session",
identifier: Optional[str] = None,
actor: Optional["User"] = None,
access: Optional[List[Literal["read", "write", "admin"]]] = ["read"],
access_type: AccessType = AccessType.ORGANIZATION,
**kwargs,
) -> "SqlalchemyBase":
"""The primary accessor for an ORM record.
Args:
db_session: the database session to use when retrieving the record
identifier: the identifier of the record to read, can be the id string or the UUID object for backwards compatibility
actor: if specified, results will be scoped only to records the user is able to access
access: if actor is specified, records will be filtered to the minimum permission level for the actor
kwargs: additional arguments to pass to the read, used for more complex objects
Returns:
The matching object
Raises:
NoResultFound: if the object is not found
"""
# this is ok because read_multiple will check if the
identifiers = [] if identifier is None else [identifier]
found = cls.read_multiple(db_session, identifiers, actor, access, access_type, **kwargs)
if len(found) == 0:
# for backwards compatibility.
conditions = []
if identifier:
conditions.append(f"id={identifier}")
if actor:
conditions.append(f"access level in {access} for {actor}")
if hasattr(cls, "is_deleted"):
conditions.append("is_deleted=False")
raise NoResultFound(f"{cls.__name__} not found with {', '.join(conditions if conditions else ['no conditions'])}")
return found[0]
@classmethod
@handle_db_timeout
def read_multiple(
cls,
db_session: "Session",
identifiers: List[str] = [],
actor: Optional["User"] = None,
access: Optional[List[Literal["read", "write", "admin"]]] = ["read"],
access_type: AccessType = AccessType.ORGANIZATION,
**kwargs,
) -> List["SqlalchemyBase"]:
"""The primary accessor for ORM record(s)
Args:
db_session: the database session to use when retrieving the record
identifiers: a list of identifiers of the records to read, can be the id string or the UUID object for backwards compatibility
actor: if specified, results will be scoped only to records the user is able to access
access: if actor is specified, records will be filtered to the minimum permission level for the actor
kwargs: additional arguments to pass to the read, used for more complex objects
Returns:
The matching object
Raises:
NoResultFound: if the object is not found
"""
logger.debug(f"Reading {cls.__name__} with ID(s): {identifiers} with actor={actor}")
# Start the query
query = select(cls)
# Collect query conditions for better error reporting
query_conditions = []
# If an identifier is provided, add it to the query conditions
if len(identifiers) > 0:
query = query.where(cls.id.in_(identifiers))
query_conditions.append(f"id='{identifiers}'")
if kwargs:
query = query.filter_by(**kwargs)
query_conditions.append(", ".join(f"{key}='{value}'" for key, value in kwargs.items()))
if actor:
query = cls.apply_access_predicate(query, actor, access, access_type)
query_conditions.append(f"access level in {access} for actor='{actor}'")
if hasattr(cls, "is_deleted"):
query = query.where(cls.is_deleted == False)
query_conditions.append("is_deleted=False")
results = db_session.execute(query).scalars().all()
if results: # if empty list a.k.a. no results
if len(identifiers) > 0:
# find which identifiers were not found
# only when identifier length is greater than 0 (so it was used in the actual query)
identifier_set = set(identifiers)
results_set = set(map(lambda obj: obj.id, results))
# we log a warning message if any of the queried IDs were not found.
# TODO: should we error out instead?
if identifier_set != results_set:
# Construct a detailed error message based on query conditions
conditions_str = ", ".join(query_conditions) if query_conditions else "no specific conditions"
logger.warning(
f"{cls.__name__} not found with {conditions_str}. Queried ids: {identifier_set}, Found ids: {results_set}"
)
return results
# Construct a detailed error message based on query conditions
conditions_str = ", ".join(query_conditions) if query_conditions else "no specific conditions"
logger.warning(f"{cls.__name__} not found with {conditions_str}")
return []
@handle_db_timeout
def create(self, db_session: "Session", actor: Optional["User"] = None) -> "SqlalchemyBase":
logger.debug(f"Creating {self.__class__.__name__} with ID: {self.id} with actor={actor}")
if actor:
self._set_created_and_updated_by_fields(actor.id)
try:
with db_session as session:
session.add(self)
session.commit()
session.refresh(self)
return self
except (DBAPIError, IntegrityError) as e:
self._handle_dbapi_error(e)
@classmethod
@handle_db_timeout
def batch_create(cls, items: List["SqlalchemyBase"], db_session: "Session", actor: Optional["User"] = None) -> List["SqlalchemyBase"]:
"""
Create multiple records in a single transaction for better performance.
Args:
items: List of model instances to create
db_session: SQLAlchemy session
actor: Optional user performing the action
Returns:
List of created model instances
"""
logger.debug(f"Batch creating {len(items)} {cls.__name__} items with actor={actor}")
if not items:
return []
# Set created/updated by fields if actor is provided
if actor:
for item in items:
item._set_created_and_updated_by_fields(actor.id)
try:
with db_session as session:
session.add_all(items)
session.flush() # Flush to generate IDs but don't commit yet
# Collect IDs to fetch the complete objects after commit
item_ids = [item.id for item in items]
session.commit()
# Re-query the objects to get them with relationships loaded
query = select(cls).where(cls.id.in_(item_ids))
if hasattr(cls, "created_at"):
query = query.order_by(cls.created_at)
return list(session.execute(query).scalars())
except (DBAPIError, IntegrityError) as e:
cls._handle_dbapi_error(e)
@handle_db_timeout
def delete(self, db_session: "Session", actor: Optional["User"] = None) -> "SqlalchemyBase":
logger.debug(f"Soft deleting {self.__class__.__name__} with ID: {self.id} with actor={actor}")
if actor:
self._set_created_and_updated_by_fields(actor.id)
self.is_deleted = True
return self.update(db_session)
@handle_db_timeout
def hard_delete(self, db_session: "Session", actor: Optional["User"] = None) -> None:
"""Permanently removes the record from the database."""
logger.debug(f"Hard deleting {self.__class__.__name__} with ID: {self.id} with actor={actor}")
with db_session as session:
try:
session.delete(self)
session.commit()
except Exception as e:
session.rollback()
logger.exception(f"Failed to hard delete {self.__class__.__name__} with ID {self.id}")
raise ValueError(f"Failed to hard delete {self.__class__.__name__} with ID {self.id}: {e}")
else:
logger.debug(f"{self.__class__.__name__} with ID {self.id} successfully hard deleted")
@handle_db_timeout
def update(self, db_session: "Session", actor: Optional["User"] = None) -> "SqlalchemyBase":
logger.debug(f"Updating {self.__class__.__name__} with ID: {self.id} with actor={actor}")
if actor:
self._set_created_and_updated_by_fields(actor.id)
self.set_updated_at()
with db_session as session:
session.add(self)
session.commit()
session.refresh(self)
return self
@classmethod
@handle_db_timeout
def size(
cls,
*,
db_session: "Session",
actor: Optional["User"] = None,
access: Optional[List[Literal["read", "write", "admin"]]] = ["read"],
access_type: AccessType = AccessType.ORGANIZATION,
**kwargs,
) -> int:
"""
Get the count of rows that match the provided filters.
Args:
db_session: SQLAlchemy session
**kwargs: Filters to apply to the query (e.g., column_name=value)
Returns:
int: The count of rows that match the filters
Raises:
DBAPIError: If a database error occurs
"""
logger.debug(f"Calculating size for {cls.__name__} with filters {kwargs}")
with db_session as session:
query = select(func.count()).select_from(cls)
if actor:
query = cls.apply_access_predicate(query, actor, access, access_type)
# Apply filtering logic based on kwargs
for key, value in kwargs.items():
if value:
column = getattr(cls, key, None)
if not column:
raise AttributeError(f"{cls.__name__} has no attribute '{key}'")
if isinstance(value, (list, tuple, set)): # Check for iterables
query = query.where(column.in_(value))
else: # Single value for equality filtering
query = query.where(column == value)
# Handle soft deletes if the class has the 'is_deleted' attribute
if hasattr(cls, "is_deleted"):
query = query.where(cls.is_deleted == False)
try:
count = session.execute(query).scalar()
return count if count else 0
except DBAPIError as e:
logger.exception(f"Failed to calculate size for {cls.__name__}")
raise e
@classmethod
def apply_access_predicate(
cls,
query: "Select",
actor: "User",
access: List[Literal["read", "write", "admin"]],
access_type: AccessType = AccessType.ORGANIZATION,
) -> "Select":
"""applies a WHERE clause restricting results to the given actor and access level
Args:
query: The initial sqlalchemy select statement
actor: The user acting on the query. **Note**: this is called 'actor' to identify the
person or system acting. Users can act on users, making naming very sticky otherwise.
access:
what mode of access should the query restrict to? This will be used with granular permissions,
but because of how it will impact every query we want to be explicitly calling access ahead of time.
Returns:
the sqlalchemy select statement restricted to the given access.
"""
del access # entrypoint for row-level permissions. Defaults to "same org as the actor, all permissions" at the moment
if access_type == AccessType.ORGANIZATION:
org_id = getattr(actor, "organization_id", None)
if not org_id:
raise ValueError(f"object {actor} has no organization accessor")
return query.where(cls.organization_id == org_id, cls.is_deleted == False)
elif access_type == AccessType.USER:
user_id = getattr(actor, "id", None)
if not user_id:
raise ValueError(f"object {actor} has no user accessor")
return query.where(cls.user_id == user_id, cls.is_deleted == False)
else:
raise ValueError(f"unknown access_type: {access_type}")
@classmethod
def _handle_dbapi_error(cls, e: DBAPIError):
"""Handle database errors and raise appropriate custom exceptions."""
orig = e.orig # Extract the original error from the DBAPIError
error_code = None
error_message = str(orig) if orig else str(e)
logger.info(f"Handling DBAPIError: {error_message}")
# Handle SQLite-specific errors
if "UNIQUE constraint failed" in error_message:
raise UniqueConstraintViolationError(
f"A unique constraint was violated for {cls.__name__}. Check your input for duplicates: {e}"
) from e
if "FOREIGN KEY constraint failed" in error_message:
raise ForeignKeyConstraintViolationError(
f"A foreign key constraint was violated for {cls.__name__}. Check your input for missing or invalid references: {e}"
) from e
# For psycopg2
if hasattr(orig, "pgcode"):
error_code = orig.pgcode
# For pg8000
elif hasattr(orig, "args") and len(orig.args) > 0:
# The first argument contains the error details as a dictionary
err_dict = orig.args[0]
if isinstance(err_dict, dict):
error_code = err_dict.get("C") # 'C' is the error code field
logger.info(f"Extracted error_code: {error_code}")
# Handle unique constraint violations
if error_code == "23505":
raise UniqueConstraintViolationError(
f"A unique constraint was violated for {cls.__name__}. Check your input for duplicates: {e}"
) from e
# Handle foreign key violations
if error_code == "23503":
raise ForeignKeyConstraintViolationError(
f"A foreign key constraint was violated for {cls.__name__}. Check your input for missing or invalid references: {e}"
) from e
# Re-raise for other unhandled DBAPI errors
raise
@property
def __pydantic_model__(self) -> "BaseModel":
raise NotImplementedError("Sqlalchemy models must declare a __pydantic_model__ property to be convertable.")
def to_pydantic(self) -> "BaseModel":
"""Converts the SQLAlchemy model to its corresponding Pydantic model."""
model = self.__pydantic_model__.model_validate(self, from_attributes=True)
# Explicitly map metadata_ to metadata in Pydantic model
if hasattr(self, "metadata_") and hasattr(model, "metadata_"):
setattr(model, "metadata_", self.metadata_) # Ensures correct assignment
return model
def pretty_print_columns(self) -> str:
"""
Pretty prints all columns of the current SQLAlchemy object along with their values.
"""
if not hasattr(self, "__table__") or not hasattr(self.__table__, "columns"):
raise NotImplementedError("This object does not have a '__table__.columns' attribute.")
# Iterate over the columns correctly
column_data = {column.name: getattr(self, column.name, None) for column in self.__table__.columns}
return pformat(column_data, indent=4, sort_dicts=True)