MemGPT/letta/schemas/tool.py
2025-03-18 12:06:02 -07:00

256 lines
12 KiB
Python

from typing import Any, Dict, List, Optional
from pydantic import Field, model_validator
from letta.constants import (
COMPOSIO_TOOL_TAG_NAME,
FUNCTION_RETURN_CHAR_LIMIT,
LETTA_CORE_TOOL_MODULE_NAME,
LETTA_MULTI_AGENT_TOOL_MODULE_NAME,
MCP_TOOL_TAG_NAME_PREFIX,
)
from letta.functions.ast_parsers import get_function_name_and_description
from letta.functions.functions import derive_openai_json_schema, get_json_schema_from_module
from letta.functions.helpers import (
generate_composio_tool_wrapper,
generate_langchain_tool_wrapper,
generate_mcp_tool_wrapper,
generate_model_from_args_json_schema,
)
from letta.functions.mcp_client.types import MCPTool
from letta.functions.schema_generator import (
generate_schema_from_args_schema_v2,
generate_tool_schema_for_composio,
generate_tool_schema_for_mcp,
)
from letta.log import get_logger
from letta.orm.enums import ToolType
from letta.schemas.letta_base import LettaBase
logger = get_logger(__name__)
class BaseTool(LettaBase):
__id_prefix__ = "tool"
class Tool(BaseTool):
"""
Representation of a tool, which is a function that can be called by the agent.
Parameters:
id (str): The unique identifier of the tool.
name (str): The name of the function.
tags (List[str]): Metadata tags.
source_code (str): The source code of the function.
json_schema (Dict): The JSON schema of the function.
"""
id: str = BaseTool.generate_id_field()
tool_type: ToolType = Field(ToolType.CUSTOM, description="The type of the tool.")
description: Optional[str] = Field(None, description="The description of the tool.")
source_type: Optional[str] = Field(None, description="The type of the source code.")
organization_id: Optional[str] = Field(None, description="The unique identifier of the organization associated with the tool.")
name: Optional[str] = Field(None, description="The name of the function.")
tags: List[str] = Field([], description="Metadata tags.")
# code
source_code: Optional[str] = Field(None, description="The source code of the function.")
json_schema: Optional[Dict] = Field(None, description="The JSON schema of the function.")
args_json_schema: Optional[Dict] = Field(None, description="The args JSON schema of the function.")
# tool configuration
return_char_limit: int = Field(FUNCTION_RETURN_CHAR_LIMIT, description="The maximum number of characters in the response.")
# metadata fields
created_by_id: Optional[str] = Field(None, description="The id of the user that made this Tool.")
last_updated_by_id: Optional[str] = Field(None, description="The id of the user that made this Tool.")
metadata_: Optional[Dict[str, Any]] = Field(default_factory=dict, description="A dictionary of additional metadata for the tool.")
@model_validator(mode="after")
def refresh_source_code_and_json_schema(self):
"""
Refresh name, description, source_code, and json_schema.
"""
if self.tool_type == ToolType.CUSTOM:
# If it's a custom tool, we need to ensure source_code is present
if not self.source_code:
error_msg = f"Custom tool with id={self.id} is missing source_code field."
logger.error(error_msg)
raise ValueError(error_msg)
# Always derive json_schema for freshest possible json_schema
# TODO: Instead of checking the tag, we should having `COMPOSIO` as a specific ToolType
# TODO: We skip this for Composio bc composio json schemas are derived differently
if not (COMPOSIO_TOOL_TAG_NAME in self.tags):
if self.args_json_schema is not None:
name, description = get_function_name_and_description(self.source_code, self.name)
args_schema = generate_model_from_args_json_schema(self.args_json_schema)
self.json_schema = generate_schema_from_args_schema_v2(
args_schema=args_schema,
name=name,
description=description,
)
else:
self.json_schema = derive_openai_json_schema(source_code=self.source_code)
elif self.tool_type in {ToolType.LETTA_CORE, ToolType.LETTA_MEMORY_CORE}:
# If it's letta core tool, we generate the json_schema on the fly here
self.json_schema = get_json_schema_from_module(module_name=LETTA_CORE_TOOL_MODULE_NAME, function_name=self.name)
elif self.tool_type in {ToolType.LETTA_MULTI_AGENT_CORE}:
# If it's letta multi-agent tool, we also generate the json_schema on the fly here
self.json_schema = get_json_schema_from_module(module_name=LETTA_MULTI_AGENT_TOOL_MODULE_NAME, function_name=self.name)
# At this point, we need to validate that at least json_schema is populated
if not self.json_schema:
error_msg = f"Tool with id={self.id} name={self.name} tool_type={self.tool_type} is missing a json_schema."
logger.error(error_msg)
raise ValueError(error_msg)
# Derive name from the JSON schema if not provided
if not self.name:
# TODO: This in theory could error, but name should always be on json_schema
# TODO: Make JSON schema a typed pydantic object
self.name = self.json_schema.get("name")
# Derive description from the JSON schema if not provided
if not self.description:
# TODO: This in theory could error, but description should always be on json_schema
# TODO: Make JSON schema a typed pydantic object
self.description = self.json_schema.get("description")
return self
class ToolCreate(LettaBase):
description: Optional[str] = Field(None, description="The description of the tool.")
tags: List[str] = Field([], description="Metadata tags.")
source_code: str = Field(..., description="The source code of the function.")
source_type: str = Field("python", description="The source type of the function.")
json_schema: Optional[Dict] = Field(
None, description="The JSON schema of the function (auto-generated from source_code if not provided)"
)
args_json_schema: Optional[Dict] = Field(None, description="The args JSON schema of the function.")
return_char_limit: int = Field(FUNCTION_RETURN_CHAR_LIMIT, description="The maximum number of characters in the response.")
# TODO should we put the HTTP / API fetch inside from_mcp?
# async def from_mcp(cls, mcp_server: str, mcp_tool_name: str) -> "ToolCreate":
@classmethod
def from_mcp(cls, mcp_server_name: str, mcp_tool: MCPTool) -> "ToolCreate":
# Pass the MCP tool to the schema generator
json_schema = generate_tool_schema_for_mcp(mcp_tool=mcp_tool)
# Return a ToolCreate instance
description = mcp_tool.description
source_type = "python"
tags = [f"{MCP_TOOL_TAG_NAME_PREFIX}:{mcp_server_name}"]
wrapper_func_name, wrapper_function_str = generate_mcp_tool_wrapper(mcp_tool.name)
return cls(
description=description,
source_type=source_type,
tags=tags,
source_code=wrapper_function_str,
json_schema=json_schema,
)
@classmethod
def from_composio(cls, action_name: str) -> "ToolCreate":
"""
Class method to create an instance of Letta-compatible Composio Tool.
Check https://docs.composio.dev/introduction/intro/overview to look at options for from_composio
This function will error if we find more than one tool, or 0 tools.
Args:
action_name str: A action name to filter tools by.
Returns:
Tool: A Letta Tool initialized with attributes derived from the Composio tool.
"""
from composio import LogLevel
from composio_langchain import ComposioToolSet
composio_toolset = ComposioToolSet(logging_level=LogLevel.ERROR)
composio_action_schemas = composio_toolset.get_action_schemas(actions=[action_name], check_connected_accounts=False)
assert len(composio_action_schemas) > 0, "User supplied parameters do not match any Composio tools"
assert (
len(composio_action_schemas) == 1
), f"User supplied parameters match too many Composio tools; {len(composio_action_schemas)} > 1"
composio_action_schema = composio_action_schemas[0]
description = composio_action_schema.description
source_type = "python"
tags = [COMPOSIO_TOOL_TAG_NAME]
wrapper_func_name, wrapper_function_str = generate_composio_tool_wrapper(action_name)
json_schema = generate_tool_schema_for_composio(composio_action_schema.parameters, name=wrapper_func_name, description=description)
return cls(
description=description,
source_type=source_type,
tags=tags,
source_code=wrapper_function_str,
json_schema=json_schema,
)
@classmethod
def from_langchain(
cls,
langchain_tool: "LangChainBaseTool",
additional_imports_module_attr_map: dict[str, str] = None,
) -> "ToolCreate":
"""
Class method to create an instance of Tool from a Langchain tool (must be from langchain_community.tools).
Args:
langchain_tool (LangChainBaseTool): An instance of a LangChain BaseTool (BaseTool from LangChain)
additional_imports_module_attr_map (dict[str, str]): A mapping of module names to attribute name. This is used internally to import all the required classes for the langchain tool. For example, you would pass in `{"langchain_community.utilities": "WikipediaAPIWrapper"}` for `from langchain_community.tools import WikipediaQueryRun`. NOTE: You do NOT need to specify the tool import here, that is done automatically for you.
Returns:
Tool: A Letta Tool initialized with attributes derived from the provided LangChain BaseTool object.
"""
description = langchain_tool.description
source_type = "python"
tags = ["langchain"]
# NOTE: langchain tools may come from different packages
wrapper_func_name, wrapper_function_str = generate_langchain_tool_wrapper(langchain_tool, additional_imports_module_attr_map)
json_schema = generate_schema_from_args_schema_v2(langchain_tool.args_schema, name=wrapper_func_name, description=description)
return cls(
description=description,
source_type=source_type,
tags=tags,
source_code=wrapper_function_str,
json_schema=json_schema,
)
class ToolUpdate(LettaBase):
description: Optional[str] = Field(None, description="The description of the tool.")
tags: Optional[List[str]] = Field(None, description="Metadata tags.")
source_code: Optional[str] = Field(None, description="The source code of the function.")
source_type: Optional[str] = Field(None, description="The type of the source code.")
json_schema: Optional[Dict] = Field(
None, description="The JSON schema of the function (auto-generated from source_code if not provided)"
)
args_json_schema: Optional[Dict] = Field(None, description="The args JSON schema of the function.")
return_char_limit: Optional[int] = Field(None, description="The maximum number of characters in the response.")
class Config:
extra = "ignore" # Allows extra fields without validation errors
# TODO: Remove this, and clean usage of ToolUpdate everywhere else
class ToolRunFromSource(LettaBase):
source_code: str = Field(..., description="The source code of the function.")
args: Dict[str, Any] = Field(..., description="The arguments to pass to the tool.")
env_vars: Dict[str, str] = Field(None, description="The environment variables to pass to the tool.")
name: Optional[str] = Field(None, description="The name of the tool to run.")
source_type: Optional[str] = Field(None, description="The type of the source code.")
args_json_schema: Optional[Dict] = Field(None, description="The args JSON schema of the function.")
json_schema: Optional[Dict] = Field(
None, description="The JSON schema of the function (auto-generated from source_code if not provided)"
)