mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
758 lines
33 KiB
Python
758 lines
33 KiB
Python
import json
|
|
import logging
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
import uuid
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from typing import Annotated, Optional
|
|
|
|
import questionary
|
|
import requests
|
|
import typer
|
|
|
|
import memgpt.utils as utils
|
|
from memgpt import create_client
|
|
from memgpt.agent import Agent, save_agent
|
|
from memgpt.cli.cli_config import configure
|
|
from memgpt.config import MemGPTConfig
|
|
from memgpt.constants import CLI_WARNING_PREFIX, MEMGPT_DIR
|
|
from memgpt.credentials import MemGPTCredentials
|
|
from memgpt.data_types import EmbeddingConfig, LLMConfig, User
|
|
from memgpt.log import get_logger
|
|
from memgpt.memory import ChatMemory
|
|
from memgpt.metadata import MetadataStore
|
|
from memgpt.migrate import migrate_all_agents, migrate_all_sources
|
|
from memgpt.models.pydantic_models import OptionState
|
|
from memgpt.server.constants import WS_DEFAULT_PORT
|
|
from memgpt.server.server import logger as server_logger
|
|
|
|
# from memgpt.interface import CLIInterface as interface # for printing to terminal
|
|
from memgpt.streaming_interface import (
|
|
StreamingRefreshCLIInterface as interface, # for printing to terminal
|
|
)
|
|
from memgpt.utils import open_folder_in_explorer, printd
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def migrate(
|
|
debug: Annotated[bool, typer.Option(help="Print extra tracebacks for failed migrations")] = False,
|
|
):
|
|
"""Migrate old agents (pre 0.2.12) to the new database system"""
|
|
migrate_all_agents(debug=debug)
|
|
migrate_all_sources(debug=debug)
|
|
|
|
|
|
class QuickstartChoice(Enum):
|
|
openai = "openai"
|
|
# azure = "azure"
|
|
memgpt_hosted = "memgpt"
|
|
|
|
|
|
def str_to_quickstart_choice(choice_str: str) -> QuickstartChoice:
|
|
try:
|
|
return QuickstartChoice[choice_str]
|
|
except KeyError:
|
|
valid_options = [choice.name for choice in QuickstartChoice]
|
|
raise ValueError(f"{choice_str} is not a valid QuickstartChoice. Valid options are: {valid_options}")
|
|
|
|
|
|
def set_config_with_dict(new_config: dict) -> (MemGPTConfig, bool):
|
|
"""_summary_
|
|
|
|
Args:
|
|
new_config (dict): Dict of new config values
|
|
|
|
Returns:
|
|
new_config MemGPTConfig, modified (bool): Returns the new config and a boolean indicating if the config was modified
|
|
"""
|
|
from memgpt.utils import printd
|
|
|
|
old_config = MemGPTConfig.load()
|
|
modified = False
|
|
for k, v in vars(old_config).items():
|
|
if k in new_config:
|
|
if v != new_config[k]:
|
|
printd(f"Replacing config {k}: {v} -> {new_config[k]}")
|
|
modified = True
|
|
# old_config[k] = new_config[k]
|
|
setattr(old_config, k, new_config[k]) # Set the new value using dot notation
|
|
else:
|
|
printd(f"Skipping new config {k}: {v} == {new_config[k]}")
|
|
|
|
# update embedding config
|
|
if old_config.default_embedding_config:
|
|
for k, v in vars(old_config.default_embedding_config).items():
|
|
if k in new_config:
|
|
if v != new_config[k]:
|
|
printd(f"Replacing config {k}: {v} -> {new_config[k]}")
|
|
modified = True
|
|
# old_config[k] = new_config[k]
|
|
setattr(old_config.default_embedding_config, k, new_config[k])
|
|
else:
|
|
printd(f"Skipping new config {k}: {v} == {new_config[k]}")
|
|
else:
|
|
modified = True
|
|
fields = ["embedding_model", "embedding_dim", "embedding_chunk_size", "embedding_endpoint", "embedding_endpoint_type"]
|
|
args = {}
|
|
for field in fields:
|
|
if field in new_config:
|
|
args[field] = new_config[field]
|
|
printd(f"Setting new config {field}: {new_config[field]}")
|
|
old_config.default_embedding_config = EmbeddingConfig(**args)
|
|
|
|
# update llm config
|
|
if old_config.default_llm_config:
|
|
for k, v in vars(old_config.default_llm_config).items():
|
|
if k in new_config:
|
|
if v != new_config[k]:
|
|
printd(f"Replacing config {k}: {v} -> {new_config[k]}")
|
|
modified = True
|
|
# old_config[k] = new_config[k]
|
|
setattr(old_config.default_llm_config, k, new_config[k])
|
|
else:
|
|
printd(f"Skipping new config {k}: {v} == {new_config[k]}")
|
|
else:
|
|
modified = True
|
|
fields = ["model", "model_endpoint", "model_endpoint_type", "model_wrapper", "context_window"]
|
|
args = {}
|
|
for field in fields:
|
|
if field in new_config:
|
|
args[field] = new_config[field]
|
|
printd(f"Setting new config {field}: {new_config[field]}")
|
|
old_config.default_llm_config = LLMConfig(**args)
|
|
return (old_config, modified)
|
|
|
|
|
|
def quickstart(
|
|
backend: Annotated[QuickstartChoice, typer.Option(help="Quickstart setup backend")] = "memgpt",
|
|
latest: Annotated[bool, typer.Option(help="Use --latest to pull the latest config from online")] = False,
|
|
debug: Annotated[bool, typer.Option(help="Use --debug to enable debugging output")] = False,
|
|
terminal: bool = True,
|
|
):
|
|
"""Set the base config file with a single command
|
|
|
|
This function and `configure` should be the ONLY places where MemGPTConfig.save() is called.
|
|
"""
|
|
|
|
# setup logger
|
|
utils.DEBUG = debug
|
|
logging.getLogger().setLevel(logging.CRITICAL)
|
|
if debug:
|
|
logging.getLogger().setLevel(logging.DEBUG)
|
|
|
|
# make sure everything is set up properly
|
|
MemGPTConfig.create_config_dir()
|
|
credentials = MemGPTCredentials.load()
|
|
|
|
config_was_modified = False
|
|
if backend == QuickstartChoice.memgpt_hosted:
|
|
# if latest, try to pull the config from the repo
|
|
# fallback to using local
|
|
if latest:
|
|
# Download the latest memgpt hosted config
|
|
url = "https://raw.githubusercontent.com/cpacker/MemGPT/main/configs/memgpt_hosted.json"
|
|
response = requests.get(url)
|
|
|
|
# Check if the request was successful
|
|
if response.status_code == 200:
|
|
# Parse the response content as JSON
|
|
config = response.json()
|
|
# Output a success message and the first few items in the dictionary as a sample
|
|
printd("JSON config file downloaded successfully.")
|
|
new_config, config_was_modified = set_config_with_dict(config)
|
|
else:
|
|
typer.secho(f"Failed to download config from {url}. Status code: {response.status_code}", fg=typer.colors.RED)
|
|
|
|
# Load the file from the relative path
|
|
script_dir = os.path.dirname(__file__) # Get the directory where the script is located
|
|
backup_config_path = os.path.join(script_dir, "..", "configs", "memgpt_hosted.json")
|
|
try:
|
|
with open(backup_config_path, "r", encoding="utf-8") as file:
|
|
backup_config = json.load(file)
|
|
printd("Loaded backup config file successfully.")
|
|
new_config, config_was_modified = set_config_with_dict(backup_config)
|
|
except FileNotFoundError:
|
|
typer.secho(f"Backup config file not found at {backup_config_path}", fg=typer.colors.RED)
|
|
return
|
|
else:
|
|
# Load the file from the relative path
|
|
script_dir = os.path.dirname(__file__) # Get the directory where the script is located
|
|
# print("SCRIPT", script_dir)
|
|
backup_config_path = os.path.join(script_dir, "..", "configs", "memgpt_hosted.json")
|
|
# print("FILE PATH", backup_config_path)
|
|
try:
|
|
with open(backup_config_path, "r", encoding="utf-8") as file:
|
|
backup_config = json.load(file)
|
|
# print(backup_config)
|
|
printd("Loaded config file successfully.")
|
|
new_config, config_was_modified = set_config_with_dict(backup_config)
|
|
except FileNotFoundError:
|
|
typer.secho(f"Config file not found at {backup_config_path}", fg=typer.colors.RED)
|
|
return
|
|
|
|
elif backend == QuickstartChoice.openai:
|
|
# Make sure we have an API key
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
while api_key is None or len(api_key) == 0:
|
|
# Ask for API key as input
|
|
api_key = questionary.password("Enter your OpenAI API key (starts with 'sk-', see https://platform.openai.com/api-keys):").ask()
|
|
credentials.openai_key = api_key
|
|
credentials.save()
|
|
|
|
# if latest, try to pull the config from the repo
|
|
# fallback to using local
|
|
if latest:
|
|
url = "https://raw.githubusercontent.com/cpacker/MemGPT/main/configs/openai.json"
|
|
response = requests.get(url)
|
|
|
|
# Check if the request was successful
|
|
if response.status_code == 200:
|
|
# Parse the response content as JSON
|
|
config = response.json()
|
|
# Output a success message and the first few items in the dictionary as a sample
|
|
print("JSON config file downloaded successfully.")
|
|
new_config, config_was_modified = set_config_with_dict(config)
|
|
else:
|
|
typer.secho(f"Failed to download config from {url}. Status code: {response.status_code}", fg=typer.colors.RED)
|
|
|
|
# Load the file from the relative path
|
|
script_dir = os.path.dirname(__file__) # Get the directory where the script is located
|
|
backup_config_path = os.path.join(script_dir, "..", "configs", "openai.json")
|
|
try:
|
|
with open(backup_config_path, "r", encoding="utf-8") as file:
|
|
backup_config = json.load(file)
|
|
printd("Loaded backup config file successfully.")
|
|
new_config, config_was_modified = set_config_with_dict(backup_config)
|
|
except FileNotFoundError:
|
|
typer.secho(f"Backup config file not found at {backup_config_path}", fg=typer.colors.RED)
|
|
return
|
|
else:
|
|
# Load the file from the relative path
|
|
script_dir = os.path.dirname(__file__) # Get the directory where the script is located
|
|
backup_config_path = os.path.join(script_dir, "..", "configs", "openai.json")
|
|
try:
|
|
with open(backup_config_path, "r", encoding="utf-8") as file:
|
|
backup_config = json.load(file)
|
|
printd("Loaded config file successfully.")
|
|
new_config, config_was_modified = set_config_with_dict(backup_config)
|
|
except FileNotFoundError:
|
|
typer.secho(f"Config file not found at {backup_config_path}", fg=typer.colors.RED)
|
|
return
|
|
|
|
else:
|
|
raise NotImplementedError(backend)
|
|
|
|
if config_was_modified:
|
|
printd(f"Saving new config file.")
|
|
new_config.save()
|
|
typer.secho(f"📖 MemGPT configuration file updated!", fg=typer.colors.GREEN)
|
|
typer.secho(
|
|
"\n".join(
|
|
[
|
|
f"🧠 model\t-> {new_config.default_llm_config.model}",
|
|
f"🖥️ endpoint\t-> {new_config.default_llm_config.model_endpoint}",
|
|
]
|
|
),
|
|
fg=typer.colors.GREEN,
|
|
)
|
|
else:
|
|
typer.secho(f"📖 MemGPT configuration file unchanged.", fg=typer.colors.WHITE)
|
|
typer.secho(
|
|
"\n".join(
|
|
[
|
|
f"🧠 model\t-> {new_config.default_llm_config.model}",
|
|
f"🖥️ endpoint\t-> {new_config.default_llm_config.model_endpoint}",
|
|
]
|
|
),
|
|
fg=typer.colors.WHITE,
|
|
)
|
|
|
|
# 'terminal' = quickstart was run alone, in which case we should guide the user on the next command
|
|
if terminal:
|
|
if config_was_modified:
|
|
typer.secho('⚡ Run "memgpt run" to create an agent with the new config.', fg=typer.colors.YELLOW)
|
|
else:
|
|
typer.secho('⚡ Run "memgpt run" to create an agent.', fg=typer.colors.YELLOW)
|
|
|
|
|
|
def open_folder():
|
|
"""Open a folder viewer of the MemGPT home directory"""
|
|
try:
|
|
print(f"Opening home folder: {MEMGPT_DIR}")
|
|
open_folder_in_explorer(MEMGPT_DIR)
|
|
except Exception as e:
|
|
print(f"Failed to open folder with system viewer, error:\n{e}")
|
|
|
|
|
|
class ServerChoice(Enum):
|
|
rest_api = "rest"
|
|
ws_api = "websocket"
|
|
|
|
|
|
def create_default_user_or_exit(config: MemGPTConfig, ms: MetadataStore):
|
|
user_id = uuid.UUID(config.anon_clientid)
|
|
user = ms.get_user(user_id=user_id)
|
|
if user is None:
|
|
ms.create_user(User(id=user_id))
|
|
user = ms.get_user(user_id=user_id)
|
|
if user is None:
|
|
typer.secho(f"Failed to create default user in database.", fg=typer.colors.RED)
|
|
sys.exit(1)
|
|
else:
|
|
return user
|
|
else:
|
|
return user
|
|
|
|
|
|
def server(
|
|
type: Annotated[ServerChoice, typer.Option(help="Server to run")] = "rest",
|
|
port: Annotated[Optional[int], typer.Option(help="Port to run the server on")] = None,
|
|
host: Annotated[Optional[str], typer.Option(help="Host to run the server on (default to localhost)")] = None,
|
|
use_ssl: Annotated[bool, typer.Option(help="Run the server using HTTPS?")] = False,
|
|
ssl_cert: Annotated[Optional[str], typer.Option(help="Path to SSL certificate (if use_ssl is True)")] = None,
|
|
ssl_key: Annotated[Optional[str], typer.Option(help="Path to SSL key file (if use_ssl is True)")] = None,
|
|
debug: Annotated[bool, typer.Option(help="Turn debugging output on")] = False,
|
|
):
|
|
"""Launch a MemGPT server process"""
|
|
|
|
if type == ServerChoice.rest_api:
|
|
pass
|
|
|
|
if MemGPTConfig.exists():
|
|
config = MemGPTConfig.load()
|
|
ms = MetadataStore(config)
|
|
create_default_user_or_exit(config, ms)
|
|
else:
|
|
typer.secho(f"No configuration exists. Run memgpt configure before starting the server.", fg=typer.colors.RED)
|
|
sys.exit(1)
|
|
|
|
try:
|
|
from memgpt.server.rest_api.server import start_server
|
|
|
|
start_server(
|
|
port=port,
|
|
host=host,
|
|
use_ssl=use_ssl,
|
|
ssl_cert=ssl_cert,
|
|
ssl_key=ssl_key,
|
|
debug=debug,
|
|
)
|
|
|
|
except KeyboardInterrupt:
|
|
# Handle CTRL-C
|
|
typer.secho("Terminating the server...")
|
|
sys.exit(0)
|
|
|
|
elif type == ServerChoice.ws_api:
|
|
if debug:
|
|
from memgpt.server.server import logger as server_logger
|
|
|
|
# Set the logging level
|
|
server_logger.setLevel(logging.DEBUG)
|
|
# Create a StreamHandler
|
|
stream_handler = logging.StreamHandler()
|
|
# Set the formatter (optional)
|
|
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
|
stream_handler.setFormatter(formatter)
|
|
# Add the handler to the logger
|
|
server_logger.addHandler(stream_handler)
|
|
|
|
if port is None:
|
|
port = WS_DEFAULT_PORT
|
|
|
|
# Change to the desired directory
|
|
script_path = Path(__file__).resolve()
|
|
script_dir = script_path.parent
|
|
|
|
server_directory = os.path.join(script_dir.parent, "server", "ws_api")
|
|
command = f"python server.py {port}"
|
|
|
|
# Run the command
|
|
typer.secho(f"Running WS (websockets) server: {command} (inside {server_directory})")
|
|
|
|
process = None
|
|
try:
|
|
# Start the subprocess in a new session
|
|
process = subprocess.Popen(command, shell=True, start_new_session=True, cwd=server_directory)
|
|
process.wait()
|
|
except KeyboardInterrupt:
|
|
# Handle CTRL-C
|
|
if process is not None:
|
|
typer.secho("Terminating the server...")
|
|
process.terminate()
|
|
try:
|
|
process.wait(timeout=5)
|
|
except subprocess.TimeoutExpired:
|
|
process.kill()
|
|
typer.secho("Server terminated with kill()")
|
|
sys.exit(0)
|
|
|
|
|
|
def run(
|
|
persona: Annotated[Optional[str], typer.Option(help="Specify persona")] = None,
|
|
agent: Annotated[Optional[str], typer.Option(help="Specify agent name")] = None,
|
|
human: Annotated[Optional[str], typer.Option(help="Specify human")] = None,
|
|
system: Annotated[Optional[str], typer.Option(help="Specify system prompt (raw text)")] = None,
|
|
system_file: Annotated[Optional[str], typer.Option(help="Specify raw text file containing system prompt")] = None,
|
|
# model flags
|
|
model: Annotated[Optional[str], typer.Option(help="Specify the LLM model")] = None,
|
|
model_wrapper: Annotated[Optional[str], typer.Option(help="Specify the LLM model wrapper")] = None,
|
|
model_endpoint: Annotated[Optional[str], typer.Option(help="Specify the LLM model endpoint")] = None,
|
|
model_endpoint_type: Annotated[Optional[str], typer.Option(help="Specify the LLM model endpoint type")] = None,
|
|
context_window: Annotated[
|
|
Optional[int], typer.Option(help="The context window of the LLM you are using (e.g. 8k for most Mistral 7B variants)")
|
|
] = None,
|
|
core_memory_limit: Annotated[
|
|
Optional[int], typer.Option(help="The character limit to each core-memory section (human/persona).")
|
|
] = 2000,
|
|
# other
|
|
first: Annotated[bool, typer.Option(help="Use --first to send the first message in the sequence")] = False,
|
|
strip_ui: Annotated[bool, typer.Option(help="Remove all the bells and whistles in CLI output (helpful for testing)")] = False,
|
|
debug: Annotated[bool, typer.Option(help="Use --debug to enable debugging output")] = False,
|
|
no_verify: Annotated[bool, typer.Option(help="Bypass message verification")] = False,
|
|
yes: Annotated[bool, typer.Option("-y", help="Skip confirmation prompt and use defaults")] = False,
|
|
# streaming
|
|
stream: Annotated[bool, typer.Option(help="Enables message streaming in the CLI (if the backend supports it)")] = False,
|
|
# whether or not to put the inner thoughts inside the function args
|
|
no_content: Annotated[
|
|
OptionState, typer.Option(help="Set to 'yes' for LLM APIs that omit the `content` field during tool calling")
|
|
] = OptionState.DEFAULT,
|
|
):
|
|
"""Start chatting with an MemGPT agent
|
|
|
|
Example usage: `memgpt run --agent myagent --data-source mydata --persona mypersona --human myhuman --model gpt-3.5-turbo`
|
|
|
|
:param persona: Specify persona
|
|
:param agent: Specify agent name (will load existing state if the agent exists, or create a new one with that name)
|
|
:param human: Specify human
|
|
:param model: Specify the LLM model
|
|
|
|
"""
|
|
|
|
# setup logger
|
|
# TODO: remove Utils Debug after global logging is complete.
|
|
utils.DEBUG = debug
|
|
# TODO: add logging command line options for runtime log level
|
|
|
|
if debug:
|
|
logger.setLevel(logging.DEBUG)
|
|
server_logger.setLevel(logging.DEBUG)
|
|
else:
|
|
logger.setLevel(logging.CRITICAL)
|
|
server_logger.setLevel(logging.CRITICAL)
|
|
|
|
from memgpt.migrate import (
|
|
VERSION_CUTOFF,
|
|
config_is_compatible,
|
|
wipe_config_and_reconfigure,
|
|
)
|
|
|
|
if not config_is_compatible(allow_empty=True):
|
|
typer.secho(f"\nYour current config file is incompatible with MemGPT versions later than {VERSION_CUTOFF}\n", fg=typer.colors.RED)
|
|
choices = [
|
|
"Run the full config setup (recommended)",
|
|
"Create a new config using defaults",
|
|
"Cancel",
|
|
]
|
|
selection = questionary.select(
|
|
f"To use MemGPT, you must either downgrade your MemGPT version (<= {VERSION_CUTOFF}), or regenerate your config. Would you like to proceed?",
|
|
choices=choices,
|
|
default=choices[0],
|
|
).ask()
|
|
if selection == choices[0]:
|
|
try:
|
|
wipe_config_and_reconfigure()
|
|
except Exception as e:
|
|
typer.secho(f"Fresh config generation failed - error:\n{e}", fg=typer.colors.RED)
|
|
raise
|
|
elif selection == choices[1]:
|
|
try:
|
|
# Don't create a config, so that the next block of code asking about quickstart is run
|
|
wipe_config_and_reconfigure(run_configure=False, create_config=False)
|
|
except Exception as e:
|
|
typer.secho(f"Fresh config generation failed - error:\n{e}", fg=typer.colors.RED)
|
|
raise
|
|
else:
|
|
typer.secho("MemGPT config regeneration cancelled", fg=typer.colors.RED)
|
|
raise KeyboardInterrupt()
|
|
|
|
typer.secho("Note: if you would like to migrate old agents to the new release, please run `memgpt migrate`!", fg=typer.colors.GREEN)
|
|
|
|
if not MemGPTConfig.exists():
|
|
# if no config, ask about quickstart
|
|
# do you want to do:
|
|
# - openai (run quickstart)
|
|
# - memgpt hosted (run quickstart)
|
|
# - other (run configure)
|
|
if yes:
|
|
# if user is passing '-y' to bypass all inputs, use memgpt hosted
|
|
# since it can't fail out if you don't have an API key
|
|
quickstart(backend=QuickstartChoice.memgpt_hosted)
|
|
config = MemGPTConfig()
|
|
|
|
else:
|
|
config_choices = {
|
|
"memgpt": "Use the free MemGPT endpoints",
|
|
"openai": "Use OpenAI (requires an OpenAI API key)",
|
|
"other": "Other (OpenAI Azure, custom LLM endpoint, etc)",
|
|
}
|
|
print()
|
|
config_selection = questionary.select(
|
|
"How would you like to set up MemGPT?",
|
|
choices=list(config_choices.values()),
|
|
default=config_choices["memgpt"],
|
|
).ask()
|
|
|
|
if config_selection == config_choices["memgpt"]:
|
|
print()
|
|
quickstart(backend=QuickstartChoice.memgpt_hosted, debug=debug, terminal=False, latest=False)
|
|
elif config_selection == config_choices["openai"]:
|
|
print()
|
|
quickstart(backend=QuickstartChoice.openai, debug=debug, terminal=False, latest=False)
|
|
elif config_selection == config_choices["other"]:
|
|
configure()
|
|
else:
|
|
raise ValueError(config_selection)
|
|
|
|
config = MemGPTConfig.load()
|
|
|
|
else: # load config
|
|
config = MemGPTConfig.load()
|
|
|
|
# read user id from config
|
|
ms = MetadataStore(config)
|
|
user = create_default_user_or_exit(config, ms)
|
|
|
|
# determine agent to use, if not provided
|
|
if not yes and not agent:
|
|
agents = ms.list_agents(user_id=user.id)
|
|
agents = [a.name for a in agents]
|
|
|
|
if len(agents) > 0:
|
|
print()
|
|
select_agent = questionary.confirm("Would you like to select an existing agent?").ask()
|
|
if select_agent is None:
|
|
raise KeyboardInterrupt
|
|
if select_agent:
|
|
agent = questionary.select("Select agent:", choices=agents).ask()
|
|
|
|
# create agent config
|
|
agent_state = ms.get_agent(agent_name=agent, user_id=user.id) if agent else None
|
|
human = human if human else config.human
|
|
persona = persona if persona else config.persona
|
|
if agent and agent_state: # use existing agent
|
|
typer.secho(f"\n🔁 Using existing agent {agent}", fg=typer.colors.GREEN)
|
|
# agent_config = AgentConfig.load(agent)
|
|
# agent_state = ms.get_agent(agent_name=agent, user_id=user_id)
|
|
printd("Loading agent state:", agent_state.id)
|
|
printd("Agent state:", agent_state.state)
|
|
# printd("State path:", agent_config.save_state_dir())
|
|
# printd("Persistent manager path:", agent_config.save_persistence_manager_dir())
|
|
# printd("Index path:", agent_config.save_agent_index_dir())
|
|
# persistence_manager = LocalStateManager(agent_config).load() # TODO: implement load
|
|
# TODO: load prior agent state
|
|
|
|
# Allow overriding model specifics (model, model wrapper, model endpoint IP + type, context_window)
|
|
if model and model != agent_state.llm_config.model:
|
|
typer.secho(
|
|
f"{CLI_WARNING_PREFIX}Overriding existing model {agent_state.llm_config.model} with {model}", fg=typer.colors.YELLOW
|
|
)
|
|
agent_state.llm_config.model = model
|
|
if context_window is not None and int(context_window) != agent_state.llm_config.context_window:
|
|
typer.secho(
|
|
f"{CLI_WARNING_PREFIX}Overriding existing context window {agent_state.llm_config.context_window} with {context_window}",
|
|
fg=typer.colors.YELLOW,
|
|
)
|
|
agent_state.llm_config.context_window = context_window
|
|
if model_wrapper and model_wrapper != agent_state.llm_config.model_wrapper:
|
|
typer.secho(
|
|
f"{CLI_WARNING_PREFIX}Overriding existing model wrapper {agent_state.llm_config.model_wrapper} with {model_wrapper}",
|
|
fg=typer.colors.YELLOW,
|
|
)
|
|
agent_state.llm_config.model_wrapper = model_wrapper
|
|
if model_endpoint and model_endpoint != agent_state.llm_config.model_endpoint:
|
|
typer.secho(
|
|
f"{CLI_WARNING_PREFIX}Overriding existing model endpoint {agent_state.llm_config.model_endpoint} with {model_endpoint}",
|
|
fg=typer.colors.YELLOW,
|
|
)
|
|
agent_state.llm_config.model_endpoint = model_endpoint
|
|
if model_endpoint_type and model_endpoint_type != agent_state.llm_config.model_endpoint_type:
|
|
typer.secho(
|
|
f"{CLI_WARNING_PREFIX}Overriding existing model endpoint type {agent_state.llm_config.model_endpoint_type} with {model_endpoint_type}",
|
|
fg=typer.colors.YELLOW,
|
|
)
|
|
agent_state.llm_config.model_endpoint_type = model_endpoint_type
|
|
|
|
# NOTE: commented out because this seems dangerous - instead users should use /systemswap when in the CLI
|
|
# # user specified a new system prompt
|
|
# if system:
|
|
# # NOTE: agent_state.system is the ORIGINAL system prompt,
|
|
# # whereas agent_state.state["system"] is the LATEST system prompt
|
|
# existing_system_prompt = agent_state.state["system"] if "system" in agent_state.state else None
|
|
# if existing_system_prompt != system:
|
|
# # override
|
|
# agent_state.state["system"] = system
|
|
|
|
# Update the agent with any overrides
|
|
ms.update_agent(agent_state)
|
|
tools = []
|
|
for tool_name in agent_state.tools:
|
|
tool = ms.get_tool(tool_name, agent_state.user_id)
|
|
if tool is None:
|
|
typer.secho(f"Couldn't find tool {tool_name} in database, please run `memgpt add tool`", fg=typer.colors.RED)
|
|
tools.append(tool)
|
|
|
|
# create agent
|
|
memgpt_agent = Agent(agent_state=agent_state, interface=interface(), tools=tools)
|
|
|
|
else: # create new agent
|
|
# create new agent config: override defaults with args if provided
|
|
typer.secho("\n🧬 Creating new agent...", fg=typer.colors.WHITE)
|
|
|
|
agent_name = agent if agent else utils.create_random_username()
|
|
llm_config = config.default_llm_config
|
|
embedding_config = config.default_embedding_config # TODO allow overriding embedding params via CLI run
|
|
|
|
# Allow overriding model specifics (model, model wrapper, model endpoint IP + type, context_window)
|
|
if model and model != llm_config.model:
|
|
typer.secho(f"{CLI_WARNING_PREFIX}Overriding default model {llm_config.model} with {model}", fg=typer.colors.YELLOW)
|
|
llm_config.model = model
|
|
if context_window is not None and int(context_window) != llm_config.context_window:
|
|
typer.secho(
|
|
f"{CLI_WARNING_PREFIX}Overriding default context window {llm_config.context_window} with {context_window}",
|
|
fg=typer.colors.YELLOW,
|
|
)
|
|
llm_config.context_window = context_window
|
|
if model_wrapper and model_wrapper != llm_config.model_wrapper:
|
|
typer.secho(
|
|
f"{CLI_WARNING_PREFIX}Overriding existing model wrapper {llm_config.model_wrapper} with {model_wrapper}",
|
|
fg=typer.colors.YELLOW,
|
|
)
|
|
llm_config.model_wrapper = model_wrapper
|
|
if model_endpoint and model_endpoint != llm_config.model_endpoint:
|
|
typer.secho(
|
|
f"{CLI_WARNING_PREFIX}Overriding existing model endpoint {llm_config.model_endpoint} with {model_endpoint}",
|
|
fg=typer.colors.YELLOW,
|
|
)
|
|
llm_config.model_endpoint = model_endpoint
|
|
if model_endpoint_type and model_endpoint_type != llm_config.model_endpoint_type:
|
|
typer.secho(
|
|
f"{CLI_WARNING_PREFIX}Overriding existing model endpoint type {llm_config.model_endpoint_type} with {model_endpoint_type}",
|
|
fg=typer.colors.YELLOW,
|
|
)
|
|
llm_config.model_endpoint_type = model_endpoint_type
|
|
|
|
# create agent
|
|
try:
|
|
client = create_client()
|
|
human_obj = ms.get_human(human, user.id)
|
|
persona_obj = ms.get_persona(persona, user.id)
|
|
# TODO pull system prompts from the metadata store
|
|
# NOTE: will be overriden later to a default
|
|
if system_file:
|
|
try:
|
|
with open(system_file, "r", encoding="utf-8") as file:
|
|
system = file.read().strip()
|
|
printd("Loaded system file successfully.")
|
|
except FileNotFoundError:
|
|
typer.secho(f"System file not found at {system_file}", fg=typer.colors.RED)
|
|
system_prompt = system if system else None
|
|
if human_obj is None:
|
|
typer.secho("Couldn't find human {human} in database, please run `memgpt add human`", fg=typer.colors.RED)
|
|
if persona_obj is None:
|
|
typer.secho("Couldn't find persona {persona} in database, please run `memgpt add persona`", fg=typer.colors.RED)
|
|
|
|
memory = ChatMemory(human=human_obj.text, persona=persona_obj.text, limit=core_memory_limit)
|
|
metadata = {"human": human_obj.name, "persona": persona_obj.name}
|
|
|
|
typer.secho(f"-> 🤖 Using persona profile: '{persona_obj.name}'", fg=typer.colors.WHITE)
|
|
typer.secho(f"-> 🧑 Using human profile: '{human_obj.name}'", fg=typer.colors.WHITE)
|
|
|
|
# add tools
|
|
agent_state = client.create_agent(
|
|
name=agent_name,
|
|
system_prompt=system_prompt,
|
|
embedding_config=embedding_config,
|
|
llm_config=llm_config,
|
|
memory=memory,
|
|
metadata=metadata,
|
|
)
|
|
typer.secho(f"-> 🛠️ {len(agent_state.tools)} tools: {', '.join([t for t in agent_state.tools])}", fg=typer.colors.WHITE)
|
|
tools = [ms.get_tool(tool_name, user_id=client.user_id) for tool_name in agent_state.tools]
|
|
|
|
memgpt_agent = Agent(
|
|
interface=interface(),
|
|
agent_state=agent_state,
|
|
tools=tools,
|
|
# gpt-3.5-turbo tends to omit inner monologue, relax this requirement for now
|
|
first_message_verify_mono=True if (model is not None and "gpt-4" in model) else False,
|
|
)
|
|
save_agent(agent=memgpt_agent, ms=ms)
|
|
|
|
except ValueError as e:
|
|
typer.secho(f"Failed to create agent from provided information:\n{e}", fg=typer.colors.RED)
|
|
sys.exit(1)
|
|
typer.secho(f"🎉 Created new agent '{memgpt_agent.agent_state.name}' (id={memgpt_agent.agent_state.id})", fg=typer.colors.GREEN)
|
|
|
|
# start event loop
|
|
from memgpt.main import run_agent_loop
|
|
|
|
print() # extra space
|
|
run_agent_loop(
|
|
memgpt_agent=memgpt_agent,
|
|
config=config,
|
|
first=first,
|
|
ms=ms,
|
|
no_verify=no_verify,
|
|
stream=stream,
|
|
inner_thoughts_in_kwargs=no_content,
|
|
) # TODO: add back no_verify
|
|
|
|
|
|
def delete_agent(
|
|
agent_name: Annotated[str, typer.Option(help="Specify agent to delete")],
|
|
user_id: Annotated[Optional[str], typer.Option(help="User ID to associate with the agent.")] = None,
|
|
):
|
|
"""Delete an agent from the database"""
|
|
# use client ID is no user_id provided
|
|
config = MemGPTConfig.load()
|
|
ms = MetadataStore(config)
|
|
if user_id is None:
|
|
user = create_default_user_or_exit(config, ms)
|
|
else:
|
|
user = ms.get_user(user_id=uuid.UUID(user_id))
|
|
|
|
try:
|
|
agent = ms.get_agent(agent_name=agent_name, user_id=user.id)
|
|
except Exception as e:
|
|
typer.secho(f"Failed to get agent {agent_name}\n{e}", fg=typer.colors.RED)
|
|
sys.exit(1)
|
|
|
|
if agent is None:
|
|
typer.secho(f"Couldn't find agent named '{agent_name}' to delete", fg=typer.colors.RED)
|
|
sys.exit(1)
|
|
|
|
confirm = questionary.confirm(f"Are you sure you want to delete agent '{agent_name}' (id={agent.id})?", default=False).ask()
|
|
if confirm is None:
|
|
raise KeyboardInterrupt
|
|
if not confirm:
|
|
typer.secho(f"Cancelled agent deletion '{agent_name}' (id={agent.id})", fg=typer.colors.GREEN)
|
|
return
|
|
|
|
try:
|
|
ms.delete_agent(agent_id=agent.id)
|
|
typer.secho(f"🕊️ Successfully deleted agent '{agent_name}' (id={agent.id})", fg=typer.colors.GREEN)
|
|
except Exception:
|
|
typer.secho(f"Failed to delete agent '{agent_name}' (id={agent.id})", fg=typer.colors.RED)
|
|
sys.exit(1)
|
|
|
|
|
|
def version():
|
|
import memgpt
|
|
|
|
print(memgpt.__version__)
|
|
return memgpt.__version__
|