MemGPT/memgpt/client/client.py
2024-08-16 19:52:47 -07:00

1014 lines
40 KiB
Python

import datetime
import time
import uuid
from typing import Dict, List, Optional, Tuple, Union
import requests
from memgpt.config import MemGPTConfig
from memgpt.constants import BASE_TOOLS, DEFAULT_HUMAN, DEFAULT_PERSONA, DEFAULT_PRESET
from memgpt.data_sources.connectors import DataConnector
from memgpt.data_types import AgentState, EmbeddingConfig, LLMConfig, Preset, Source
from memgpt.functions.functions import parse_source_code
from memgpt.functions.schema_generator import generate_schema
from memgpt.memory import BaseMemory, ChatMemory, get_memory_functions
from memgpt.models.pydantic_models import (
HumanModel,
JobModel,
JobStatus,
LLMConfigModel,
PersonaModel,
PresetModel,
SourceModel,
ToolModel,
)
from memgpt.server.rest_api.agents.command import CommandResponse
from memgpt.server.rest_api.agents.config import GetAgentResponse
from memgpt.server.rest_api.agents.index import CreateAgentResponse, ListAgentsResponse
from memgpt.server.rest_api.agents.memory import (
ArchivalMemoryObject,
GetAgentArchivalMemoryResponse,
GetAgentMemoryResponse,
InsertAgentArchivalMemoryResponse,
UpdateAgentMemoryResponse,
)
from memgpt.server.rest_api.agents.message import (
GetAgentMessagesResponse,
UserMessageResponse,
)
from memgpt.server.rest_api.config.index import ConfigResponse
from memgpt.server.rest_api.humans.index import ListHumansResponse
from memgpt.server.rest_api.interface import QueuingInterface
from memgpt.server.rest_api.models.index import ListModelsResponse
from memgpt.server.rest_api.personas.index import ListPersonasResponse
from memgpt.server.rest_api.presets.index import (
CreatePresetResponse,
CreatePresetsRequest,
ListPresetsResponse,
)
from memgpt.server.rest_api.sources.index import ListSourcesResponse
# import pydantic response objects from memgpt.server.rest_api
from memgpt.server.rest_api.tools.index import CreateToolRequest, ListToolsResponse
from memgpt.server.server import SyncServer
from memgpt.utils import get_human_text
def create_client(base_url: Optional[str] = None, token: Optional[str] = None):
if base_url is None:
return LocalClient()
else:
return RESTClient(base_url, token)
class AbstractClient(object):
def __init__(
self,
auto_save: bool = False,
debug: bool = False,
):
self.auto_save = auto_save
self.debug = debug
# agents
def list_agents(self):
"""List all agents associated with a given user."""
raise NotImplementedError
def agent_exists(self, agent_id: Optional[str] = None, agent_name: Optional[str] = None) -> bool:
"""Check if an agent with the specified ID or name exists."""
raise NotImplementedError
def create_agent(
self,
name: Optional[str] = None,
preset: Optional[str] = None,
persona: Optional[str] = None,
human: Optional[str] = None,
embedding_config: Optional[EmbeddingConfig] = None,
llm_config: Optional[LLMConfig] = None,
) -> AgentState:
"""Create a new agent with the specified configuration."""
raise NotImplementedError
def rename_agent(self, agent_id: uuid.UUID, new_name: str):
"""Rename the agent."""
raise NotImplementedError
def delete_agent(self, agent_id: uuid.UUID):
"""Delete the agent."""
raise NotImplementedError
def get_agent(self, agent_id: Optional[str] = None, agent_name: Optional[str] = None) -> AgentState:
raise NotImplementedError
# presets
def create_preset(self, preset: Preset):
raise NotImplementedError
def delete_preset(self, preset_id: uuid.UUID):
raise NotImplementedError
def list_presets(self):
raise NotImplementedError
# memory
def get_agent_memory(self, agent_id: str) -> Dict:
raise NotImplementedError
def update_agent_core_memory(self, agent_id: str, human: Optional[str] = None, persona: Optional[str] = None) -> Dict:
raise NotImplementedError
# agent interactions
def user_message(self, agent_id: str, message: str) -> Union[List[Dict], Tuple[List[Dict], int]]:
raise NotImplementedError
def run_command(self, agent_id: str, command: str) -> Union[str, None]:
raise NotImplementedError
def save(self):
raise NotImplementedError
# archival memory
def get_agent_archival_memory(
self, agent_id: uuid.UUID, before: Optional[uuid.UUID] = None, after: Optional[uuid.UUID] = None, limit: Optional[int] = 1000
):
"""Paginated get for the archival memory for an agent"""
raise NotImplementedError
def insert_archival_memory(self, agent_id: uuid.UUID, memory: str):
"""Insert archival memory into the agent."""
raise NotImplementedError
def delete_archival_memory(self, agent_id: uuid.UUID, memory_id: uuid.UUID):
"""Delete archival memory from the agent."""
raise NotImplementedError
# messages (recall memory)
def get_messages(
self, agent_id: uuid.UUID, before: Optional[uuid.UUID] = None, after: Optional[uuid.UUID] = None, limit: Optional[int] = 1000
):
"""Get messages for the agent."""
raise NotImplementedError
def send_message(self, agent_id: uuid.UUID, message: str, role: str, stream: Optional[bool] = False):
"""Send a message to the agent."""
raise NotImplementedError
# humans / personas
def list_humans(self):
"""List all humans."""
raise NotImplementedError
def create_human(self, name: str, text: str):
"""Create a human."""
raise NotImplementedError
def list_personas(self):
"""List all personas."""
raise NotImplementedError
def create_persona(self, name: str, text: str):
"""Create a persona."""
raise NotImplementedError
# tools
def list_tools(self):
"""List all tools."""
raise NotImplementedError
# data sources
def list_sources(self):
"""List loaded sources"""
raise NotImplementedError
def delete_source(self):
"""Delete a source and associated data (including attached to agents)"""
raise NotImplementedError
def load_file_into_source(self, filename: str, source_id: uuid.UUID):
"""Load {filename} and insert into source"""
raise NotImplementedError
def create_source(self, name: str):
"""Create a new source"""
raise NotImplementedError
def attach_source_to_agent(self, source_id: uuid.UUID, agent_id: uuid.UUID):
"""Attach a source to an agent"""
raise NotImplementedError
def detach_source(self, source_id: uuid.UUID, agent_id: uuid.UUID):
"""Detach a source from an agent"""
raise NotImplementedError
# server configuration commands
def list_models(self):
"""List all models."""
raise NotImplementedError
def get_config(self):
"""Get server config"""
raise NotImplementedError
class RESTClient(AbstractClient):
def __init__(
self,
base_url: str,
token: str,
debug: bool = False,
):
super().__init__(debug=debug)
self.base_url = base_url
self.headers = {"accept": "application/json", "authorization": f"Bearer {token}"}
def list_agents(self):
response = requests.get(f"{self.base_url}/api/agents", headers=self.headers)
return ListAgentsResponse(**response.json())
def agent_exists(self, agent_id: Optional[str] = None, agent_name: Optional[str] = None) -> bool:
response = requests.get(f"{self.base_url}/api/agents/{str(agent_id)}/config", headers=self.headers)
if response.status_code == 404:
# not found error
return False
elif response.status_code == 200:
return True
else:
raise ValueError(f"Failed to check if agent exists: {response.text}")
def get_tool(self, tool_name: str):
response = requests.get(f"{self.base_url}/api/tools/{tool_name}", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get tool: {response.text}")
return ToolModel(**response.json())
def create_agent(
self,
name: Optional[str] = None,
preset: Optional[str] = None, # TODO: this should actually be re-named preset_name
embedding_config: Optional[EmbeddingConfig] = None,
llm_config: Optional[LLMConfig] = None,
# memory
memory: BaseMemory = ChatMemory(human=get_human_text(DEFAULT_HUMAN), persona=get_human_text(DEFAULT_PERSONA)),
# system prompt (can be templated)
system_prompt: Optional[str] = None,
# tools
tools: Optional[List[str]] = None,
include_base_tools: Optional[bool] = True,
metadata: Optional[Dict] = {"human:": DEFAULT_HUMAN, "persona": DEFAULT_PERSONA},
) -> AgentState:
"""
Create an agent
Args:
name (str): Name of the agent
tools (List[str]): List of tools (by name) to attach to the agent
include_base_tools (bool): Whether to include base tools (default: `True`)
Returns:
agent_state (AgentState): State of the the created agent.
"""
if embedding_config or llm_config:
raise ValueError("Cannot override embedding_config or llm_config when creating agent via REST API")
# construct list of tools
tool_names = []
if tools:
tool_names += tools
if include_base_tools:
tool_names += BASE_TOOLS
# add memory tools
memory_functions = get_memory_functions(memory)
for func_name, func in memory_functions.items():
tool = self.create_tool(func, name=func_name, tags=["memory", "memgpt-base"], update=True)
tool_names.append(tool.name)
# TODO: distinguish between name and objects
# TODO: add metadata
payload = {
"config": {
"name": name,
"preset": preset,
"system": system_prompt,
"persona": memory.memory["persona"].value,
"human": memory.memory["human"].value,
"function_names": tool_names,
"metadata": metadata,
}
}
response = requests.post(f"{self.base_url}/api/agents", json=payload, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Status {response.status_code} - Failed to create agent: {response.text}")
response_obj = CreateAgentResponse(**response.json())
return self.get_agent_response_to_state(response_obj)
def get_agent_response_to_state(self, response: Union[GetAgentResponse, CreateAgentResponse]) -> AgentState:
# TODO: eventually remove this conversion
llm_config = LLMConfig(
model=response.agent_state.llm_config.model,
model_endpoint_type=response.agent_state.llm_config.model_endpoint_type,
model_endpoint=response.agent_state.llm_config.model_endpoint,
model_wrapper=response.agent_state.llm_config.model_wrapper,
context_window=response.agent_state.llm_config.context_window,
)
embedding_config = EmbeddingConfig(
embedding_endpoint_type=response.agent_state.embedding_config.embedding_endpoint_type,
embedding_endpoint=response.agent_state.embedding_config.embedding_endpoint,
embedding_model=response.agent_state.embedding_config.embedding_model,
embedding_dim=response.agent_state.embedding_config.embedding_dim,
embedding_chunk_size=response.agent_state.embedding_config.embedding_chunk_size,
)
agent_state = AgentState(
id=response.agent_state.id,
name=response.agent_state.name,
user_id=response.agent_state.user_id,
llm_config=llm_config,
embedding_config=embedding_config,
state=response.agent_state.state,
system=response.agent_state.system,
tools=response.agent_state.tools,
_metadata=response.agent_state.metadata,
# load datetime from timestampe
created_at=datetime.datetime.fromtimestamp(response.agent_state.created_at, tz=datetime.timezone.utc),
)
return agent_state
def rename_agent(self, agent_id: uuid.UUID, new_name: str):
response = requests.patch(f"{self.base_url}/api/agents/{str(agent_id)}/rename", json={"agent_name": new_name}, headers=self.headers)
assert response.status_code == 200, f"Failed to rename agent: {response.text}"
response_obj = GetAgentResponse(**response.json())
return self.get_agent_response_to_state(response_obj)
def delete_agent(self, agent_id: uuid.UUID):
"""Delete the agent."""
response = requests.delete(f"{self.base_url}/api/agents/{str(agent_id)}", headers=self.headers)
assert response.status_code == 200, f"Failed to delete agent: {response.text}"
def get_agent(self, agent_id: Optional[str] = None, agent_name: Optional[str] = None) -> AgentState:
response = requests.get(f"{self.base_url}/api/agents/{str(agent_id)}/config", headers=self.headers)
assert response.status_code == 200, f"Failed to get agent: {response.text}"
response_obj = GetAgentResponse(**response.json())
return self.get_agent_response_to_state(response_obj)
def get_preset(self, name: str) -> PresetModel:
# TODO: remove
response = requests.get(f"{self.base_url}/api/presets/{name}", headers=self.headers)
assert response.status_code == 200, f"Failed to get preset: {response.text}"
return PresetModel(**response.json())
def create_preset(
self,
name: str,
description: Optional[str] = None,
system_name: Optional[str] = None,
persona_name: Optional[str] = None,
human_name: Optional[str] = None,
tools: Optional[List[ToolModel]] = None,
default_tools: bool = True,
) -> PresetModel:
# TODO: remove
"""Create an agent preset
:param name: Name of the preset
:type name: str
:param system: System prompt (text)
:type system: str
:param persona: Persona prompt (text)
:type persona: Optional[str]
:param human: Human prompt (text)
:type human: Optional[str]
:param tools: List of tools to connect, defaults to None
:type tools: Optional[List[Tool]], optional
:param default_tools: Whether to automatically include default tools, defaults to True
:type default_tools: bool, optional
:return: Preset object
:rtype: PresetModel
"""
# provided tools
schema = []
if tools:
for tool in tools:
schema.append(tool.json_schema)
# include default tools
default_preset = self.get_preset(name=DEFAULT_PRESET)
if default_tools:
# TODO
# from memgpt.functions.functions import load_function_set
# load_function_set()
# return
for function in default_preset.functions_schema:
schema.append(function)
payload = CreatePresetsRequest(
name=name,
description=description,
system_name=system_name,
persona_name=persona_name,
human_name=human_name,
functions_schema=schema,
)
response = requests.post(f"{self.base_url}/api/presets", json=payload.model_dump(), headers=self.headers)
assert response.status_code == 200, f"Failed to create preset: {response.text}"
return CreatePresetResponse(**response.json()).preset
def delete_preset(self, preset_id: uuid.UUID):
response = requests.delete(f"{self.base_url}/api/presets/{str(preset_id)}", headers=self.headers)
assert response.status_code == 200, f"Failed to delete preset: {response.text}"
def list_presets(self) -> List[PresetModel]:
response = requests.get(f"{self.base_url}/api/presets", headers=self.headers)
return ListPresetsResponse(**response.json()).presets
# memory
def get_agent_memory(self, agent_id: uuid.UUID) -> GetAgentMemoryResponse:
response = requests.get(f"{self.base_url}/api/agents/{agent_id}/memory", headers=self.headers)
return GetAgentMemoryResponse(**response.json())
def update_agent_core_memory(self, agent_id: str, new_memory_contents: Dict) -> UpdateAgentMemoryResponse:
response = requests.post(f"{self.base_url}/api/agents/{agent_id}/memory", json=new_memory_contents, headers=self.headers)
return UpdateAgentMemoryResponse(**response.json())
# agent interactions
def user_message(self, agent_id: str, message: str) -> Union[List[Dict], Tuple[List[Dict], int]]:
return self.send_message(agent_id, message, role="user")
def run_command(self, agent_id: str, command: str) -> Union[str, None]:
response = requests.post(f"{self.base_url}/api/agents/{str(agent_id)}/command", json={"command": command}, headers=self.headers)
return CommandResponse(**response.json())
def save(self):
raise NotImplementedError
# archival memory
def get_agent_archival_memory(
self, agent_id: uuid.UUID, before: Optional[uuid.UUID] = None, after: Optional[uuid.UUID] = None, limit: Optional[int] = 1000
):
"""Paginated get for the archival memory for an agent"""
params = {"limit": limit}
if before:
params["before"] = str(before)
if after:
params["after"] = str(after)
response = requests.get(f"{self.base_url}/api/agents/{str(agent_id)}/archival", params=params, headers=self.headers)
assert response.status_code == 200, f"Failed to get archival memory: {response.text}"
return GetAgentArchivalMemoryResponse(**response.json())
def insert_archival_memory(self, agent_id: uuid.UUID, memory: str) -> GetAgentArchivalMemoryResponse:
response = requests.post(f"{self.base_url}/api/agents/{agent_id}/archival", json={"content": memory}, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to insert archival memory: {response.text}")
return InsertAgentArchivalMemoryResponse(**response.json())
def delete_archival_memory(self, agent_id: uuid.UUID, memory_id: uuid.UUID):
response = requests.delete(f"{self.base_url}/api/agents/{agent_id}/archival?id={memory_id}", headers=self.headers)
assert response.status_code == 200, f"Failed to delete archival memory: {response.text}"
# messages (recall memory)
def get_messages(
self, agent_id: uuid.UUID, before: Optional[uuid.UUID] = None, after: Optional[uuid.UUID] = None, limit: Optional[int] = 1000
) -> GetAgentMessagesResponse:
params = {"before": before, "after": after, "limit": limit}
response = requests.get(f"{self.base_url}/api/agents/{agent_id}/messages-cursor", params=params, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get messages: {response.text}")
return GetAgentMessagesResponse(**response.json())
def send_message(self, agent_id: uuid.UUID, message: str, role: str, stream: Optional[bool] = False) -> UserMessageResponse:
data = {"message": message, "role": role, "stream": stream}
response = requests.post(f"{self.base_url}/api/agents/{agent_id}/messages", json=data, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to send message: {response.text}")
return UserMessageResponse(**response.json())
# humans / personas
def list_humans(self) -> ListHumansResponse:
response = requests.get(f"{self.base_url}/api/humans", headers=self.headers)
return ListHumansResponse(**response.json())
def create_human(self, name: str, text: str) -> HumanModel:
data = {"name": name, "text": text}
response = requests.post(f"{self.base_url}/api/humans", json=data, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to create human: {response.text}")
return HumanModel(**response.json())
def list_personas(self) -> ListPersonasResponse:
response = requests.get(f"{self.base_url}/api/personas", headers=self.headers)
return ListPersonasResponse(**response.json())
def create_persona(self, name: str, text: str) -> PersonaModel:
data = {"name": name, "text": text}
response = requests.post(f"{self.base_url}/api/personas", json=data, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to create persona: {response.text}")
return PersonaModel(**response.json())
def get_persona(self, name: str) -> PersonaModel:
response = requests.get(f"{self.base_url}/api/personas/{name}", headers=self.headers)
if response.status_code == 404:
return None
elif response.status_code != 200:
raise ValueError(f"Failed to get persona: {response.text}")
return PersonaModel(**response.json())
def get_human(self, name: str) -> HumanModel:
response = requests.get(f"{self.base_url}/api/humans/{name}", headers=self.headers)
if response.status_code == 404:
return None
elif response.status_code != 200:
raise ValueError(f"Failed to get human: {response.text}")
return HumanModel(**response.json())
# sources
def list_sources(self):
"""List loaded sources"""
response = requests.get(f"{self.base_url}/api/sources", headers=self.headers)
response_json = response.json()
return ListSourcesResponse(**response_json)
def delete_source(self, source_id: uuid.UUID):
"""Delete a source and associated data (including attached to agents)"""
response = requests.delete(f"{self.base_url}/api/sources/{str(source_id)}", headers=self.headers)
assert response.status_code == 200, f"Failed to delete source: {response.text}"
def get_job_status(self, job_id: uuid.UUID):
response = requests.get(f"{self.base_url}/api/sources/status/{str(job_id)}", headers=self.headers)
return JobModel(**response.json())
def load_file_into_source(self, filename: str, source_id: uuid.UUID, blocking=True):
"""Load {filename} and insert into source"""
files = {"file": open(filename, "rb")}
# create job
response = requests.post(f"{self.base_url}/api/sources/{source_id}/upload", files=files, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to upload file to source: {response.text}")
job = JobModel(**response.json())
if blocking:
# wait until job is completed
while True:
job = self.get_job_status(job.id)
if job.status == JobStatus.completed:
break
elif job.status == JobStatus.failed:
raise ValueError(f"Job failed: {job.metadata}")
time.sleep(1)
return job
def create_source(self, name: str) -> Source:
"""Create a new source"""
payload = {"name": name}
response = requests.post(f"{self.base_url}/api/sources", json=payload, headers=self.headers)
response_json = response.json()
response_obj = SourceModel(**response_json)
return Source(
id=uuid.UUID(response_obj.id),
name=response_obj.name,
user_id=uuid.UUID(response_obj.user_id),
created_at=response_obj.created_at,
embedding_dim=response_obj.embedding_config["embedding_dim"],
embedding_model=response_obj.embedding_config["embedding_model"],
)
def attach_source_to_agent(self, source_id: uuid.UUID, agent_id: uuid.UUID):
"""Attach a source to an agent"""
params = {"agent_id": agent_id}
response = requests.post(f"{self.base_url}/api/sources/{source_id}/attach", params=params, headers=self.headers)
assert response.status_code == 200, f"Failed to attach source to agent: {response.text}"
def detach_source(self, source_id: uuid.UUID, agent_id: uuid.UUID):
"""Detach a source from an agent"""
params = {"agent_id": str(agent_id)}
response = requests.post(f"{self.base_url}/api/sources/{source_id}/detach", params=params, headers=self.headers)
assert response.status_code == 200, f"Failed to detach source from agent: {response.text}"
# server configuration commands
def list_models(self) -> ListModelsResponse:
response = requests.get(f"{self.base_url}/api/models", headers=self.headers)
return ListModelsResponse(**response.json())
def get_config(self) -> ConfigResponse:
response = requests.get(f"{self.base_url}/api/config", headers=self.headers)
return ConfigResponse(**response.json())
# tools
def create_tool(
self,
func,
name: Optional[str] = None,
update: Optional[bool] = True, # TODO: actually use this
tags: Optional[List[str]] = None,
):
"""Create a tool
Args:
func (callable): The function to create a tool for.
tags (Optional[List[str]], optional): Tags for the tool. Defaults to None.
update (bool, optional): Update the tool if it already exists. Defaults to True.
Returns:
Tool object
"""
# TODO: check if tool already exists
# TODO: how to load modules?
# parse source code/schema
source_code = parse_source_code(func)
json_schema = generate_schema(func, name)
source_type = "python"
json_schema["name"]
# create data
data = {"source_code": source_code, "source_type": source_type, "tags": tags, "json_schema": json_schema, "update": update}
try:
CreateToolRequest(**data) # validate data
except Exception as e:
raise ValueError(f"Failed to create tool: {e}, invalid input {data}")
# make REST request
response = requests.post(f"{self.base_url}/api/tools", json=data, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to create tool: {response.text}")
return ToolModel(**response.json())
def list_tools(self) -> ListToolsResponse:
response = requests.get(f"{self.base_url}/api/tools", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to list tools: {response.text}")
return ListToolsResponse(**response.json()).tools
def delete_tool(self, name: str):
response = requests.delete(f"{self.base_url}/api/tools/{name}", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to delete tool: {response.text}")
return response.json()
def get_tool(self, name: str):
response = requests.get(f"{self.base_url}/api/tools/{name}", headers=self.headers)
if response.status_code == 404:
return None
elif response.status_code != 200:
raise ValueError(f"Failed to get tool: {response.text}")
return ToolModel(**response.json())
class LocalClient(AbstractClient):
def __init__(
self,
auto_save: bool = False,
user_id: Optional[str] = None,
debug: bool = False,
):
"""
Initializes a new instance of Client class.
:param auto_save: indicates whether to automatically save after every message.
:param quickstart: allows running quickstart on client init.
:param config: optional config settings to apply after quickstart
:param debug: indicates whether to display debug messages.
"""
self.auto_save = auto_save
# determine user_id (pulled from local config)
config = MemGPTConfig.load()
if user_id:
self.user_id = uuid.UUID(user_id)
else:
self.user_id = uuid.UUID(config.anon_clientid)
self.interface = QueuingInterface(debug=debug)
self.server = SyncServer(default_interface_factory=lambda: self.interface)
# create user if does not exist
self.server.create_user({"id": self.user_id}, exists_ok=True)
# agents
def list_agents(self) -> List[AgentState]:
self.interface.clear()
# TODO: fix the server function
# return self.server.list_agents(user_id=self.user_id)
return self.server.ms.list_agents(user_id=self.user_id)
def agent_exists(self, agent_id: Optional[str] = None, agent_name: Optional[str] = None) -> bool:
if not (agent_id or agent_name):
raise ValueError(f"Either agent_id or agent_name must be provided")
if agent_id and agent_name:
raise ValueError(f"Only one of agent_id or agent_name can be provided")
existing = self.list_agents()
if agent_id:
return str(agent_id) in [str(agent.id) for agent in existing]
else:
return agent_name in [str(agent.name) for agent in existing]
def create_agent(
self,
name: Optional[str] = None,
# model configs
embedding_config: Optional[EmbeddingConfig] = None,
llm_config: Optional[LLMConfig] = None,
# memory
memory: BaseMemory = ChatMemory(human=get_human_text(DEFAULT_HUMAN), persona=get_human_text(DEFAULT_PERSONA)),
# system prompt (can be templated)
system_prompt: Optional[str] = None,
# tools
tools: Optional[List[str]] = None,
include_base_tools: Optional[bool] = True,
# metadata
metadata: Optional[Dict] = {"human:": DEFAULT_HUMAN, "persona": DEFAULT_PERSONA},
) -> AgentState:
if name and self.agent_exists(agent_name=name):
raise ValueError(f"Agent with name {name} already exists (user_id={self.user_id})")
# construct list of tools
tool_names = []
if tools:
tool_names += tools
if include_base_tools:
tool_names += BASE_TOOLS
# add memory tools
memory_functions = get_memory_functions(memory)
for func_name, func in memory_functions.items():
tool = self.create_tool(func, name=func_name, tags=["memory", "memgpt-base"])
tool_names.append(tool.name)
self.interface.clear()
# create agent
agent_state = self.server.create_agent(
user_id=self.user_id,
name=name,
memory=memory,
system=system_prompt,
llm_config=llm_config,
embedding_config=embedding_config,
tools=tool_names,
metadata=metadata,
)
return agent_state
def rename_agent(self, agent_id: uuid.UUID, new_name: str):
# TODO: check valid name
agent_state = self.server.rename_agent(user_id=self.user_id, agent_id=agent_id, new_agent_name=new_name)
return agent_state
def delete_agent(self, agent_id: uuid.UUID):
self.server.delete_agent(user_id=self.user_id, agent_id=agent_id)
def get_agent_config(self, agent_id: uuid.UUID) -> AgentState:
self.interface.clear()
return self.server.get_agent_config(user_id=self.user_id, agent_id=agent_id)
def get_agent(self, agent_id: Optional[uuid.UUID] = None, agent_name: Optional[str] = None):
return self.server.ms.get_agent(user_id=self.user_id, agent_id=agent_id, agent_name=agent_name)
# presets
def create_preset(self, preset: Preset) -> Preset:
if preset.user_id is None:
preset.user_id = self.user_id
preset = self.server.create_preset(preset=preset)
return preset
def delete_preset(self, preset_id: uuid.UUID):
preset = self.server.delete_preset(preset_id=preset_id, user_id=self.user_id)
def list_presets(self) -> List[PresetModel]:
return self.server.list_presets(user_id=self.user_id)
# memory
def get_agent_memory(self, agent_id: str) -> Dict:
memory = self.server.get_agent_memory(user_id=self.user_id, agent_id=agent_id)
return GetAgentMemoryResponse(**memory)
def update_agent_core_memory(self, agent_id: str, new_memory_contents: Dict) -> Dict:
self.interface.clear()
return self.server.update_agent_core_memory(user_id=self.user_id, agent_id=agent_id, new_memory_contents=new_memory_contents)
# agent interactions
def send_message(
self,
message: str,
role: str,
agent_id: Optional[uuid.UUID] = None,
agent_name: Optional[str] = None,
stream: Optional[bool] = False,
) -> UserMessageResponse:
if not agent_id:
assert agent_name, f"Either agent_id or agent_name must be provided"
agent_state = self.get_agent(agent_name=agent_name)
agent_id = agent_state.id
if stream:
# TODO: implement streaming with stream=True/False
raise NotImplementedError
self.interface.clear()
if role == "system":
usage = self.server.system_message(user_id=self.user_id, agent_id=agent_id, message=message)
elif role == "user":
usage = self.server.user_message(user_id=self.user_id, agent_id=agent_id, message=message)
else:
raise ValueError(f"Role {role} not supported")
if self.auto_save:
self.save()
else:
return UserMessageResponse(messages=self.interface.to_list(), usage=usage)
def user_message(self, agent_id: str, message: str) -> UserMessageResponse:
self.interface.clear()
usage = self.server.user_message(user_id=self.user_id, agent_id=agent_id, message=message)
if self.auto_save:
self.save()
else:
return UserMessageResponse(messages=self.interface.to_list(), usage=usage)
def run_command(self, agent_id: str, command: str) -> Union[str, None]:
self.interface.clear()
return self.server.run_command(user_id=self.user_id, agent_id=agent_id, command=command)
def save(self):
self.server.save_agents()
# archival memory
# humans / personas
def create_human(self, name: str, text: str):
return self.server.add_human(HumanModel(name=name, text=text, user_id=self.user_id))
def create_persona(self, name: str, text: str):
return self.server.add_persona(PersonaModel(name=name, text=text, user_id=self.user_id))
def list_humans(self):
return self.server.list_humans(user_id=self.user_id if self.user_id else self.user_id)
def get_human(self, name: str):
return self.server.get_human(name=name, user_id=self.user_id)
def update_human(self, name: str, text: str):
human = self.get_human(name)
human.text = text
return self.server.update_human(human)
def delete_human(self, name: str):
return self.server.delete_human(name, self.user_id)
def list_personas(self):
return self.server.list_personas(user_id=self.user_id)
def get_persona(self, name: str):
return self.server.get_persona(name=name, user_id=self.user_id)
def update_persona(self, name: str, text: str):
persona = self.get_persona(name)
persona.text = text
return self.server.update_persona(persona)
def delete_persona(self, name: str):
return self.server.delete_persona(name, self.user_id)
# tools
def create_tool(
self,
func,
name: Optional[str] = None,
update: Optional[bool] = True, # TODO: actually use this
tags: Optional[List[str]] = None,
):
"""
Create a tool.
Args:
func (callable): The function to create a tool for.
tags (Optional[List[str]], optional): Tags for the tool. Defaults to None.
update (bool, optional): Update the tool if it already exists. Defaults to True.
Returns:
tool (ToolModel): The created tool.
"""
# TODO: check if tool already exists
# TODO: how to load modules?
# parse source code/schema
source_code = parse_source_code(func)
json_schema = generate_schema(func, name)
source_type = "python"
tool_name = json_schema["name"]
assert name is None or name == tool_name, f"Tool name {name} does not match schema name {tool_name}"
return self.server.create_tool(
user_id=self.user_id,
source_code=source_code,
source_type=source_type,
tags=tags,
json_schema=json_schema,
exists_ok=update,
)
def list_tools(self):
"""List available tools.
Returns:
tools (List[ToolModel]): A list of available tools.
"""
return self.server.ms.list_tools(user_id=self.user_id)
def get_tool(self, name: str):
return self.server.ms.get_tool(name, user_id=self.user_id)
def delete_tool(self, name: str):
return self.server.ms.delete_tool(name, user_id=self.user_id)
# data sources
def load_data(self, connector: DataConnector, source_name: str):
self.server.load_data(user_id=self.user_id, connector=connector, source_name=source_name)
def create_source(self, name: str):
return self.server.create_source(user_id=self.user_id, name=name)
def delete_source(self, source_id: Optional[uuid.UUID] = None, source_name: Optional[str] = None):
# TODO: delete source data
self.server.delete_source(user_id=self.user.id, source_id=source_id, source_name=source_name)
def get_source(self, source_id: Optional[uuid.UUID] = None, source_name: Optional[str] = None):
return self.server.ms.get_source(user_id=self.user_id, source_id=source_id, source_name=source_name)
def attach_source_to_agent(self, source_id: uuid.UUID, agent_id: uuid.UUID):
self.server.attach_source_to_agent(user_id=self.user_id, source_id=source_id, agent_id=agent_id)
def list_sources(self):
return self.server.list_all_sources(user_id=self.user_id)
def get_agent_archival_memory(
self, agent_id: uuid.UUID, before: Optional[uuid.UUID] = None, after: Optional[uuid.UUID] = None, limit: Optional[int] = 1000
):
self.interface.clear()
# TODO need to add support for non-postgres here
# chroma will throw:
# raise ValueError("Cannot run get_all_cursor with chroma")
_, archival_json_records = self.server.get_agent_archival_cursor(
user_id=self.user_id,
agent_id=agent_id,
after=after,
before=before,
limit=limit,
)
archival_memory_objects = [ArchivalMemoryObject(id=passage["id"], contents=passage["text"]) for passage in archival_json_records]
return GetAgentArchivalMemoryResponse(archival_memory=archival_memory_objects)
def insert_archival_memory(self, agent_id: uuid.UUID, memory: str) -> GetAgentArchivalMemoryResponse:
memory_ids = self.server.insert_archival_memory(user_id=self.user_id, agent_id=agent_id, memory_contents=memory)
return InsertAgentArchivalMemoryResponse(ids=memory_ids)
def delete_archival_memory(self, agent_id: uuid.UUID, memory_id: uuid.UUID):
self.server.delete_archival_memory(user_id=self.user_id, agent_id=agent_id, memory_id=memory_id)
def get_messages(
self, agent_id: uuid.UUID, before: Optional[uuid.UUID] = None, after: Optional[uuid.UUID] = None, limit: Optional[int] = 1000
) -> GetAgentMessagesResponse:
self.interface.clear()
[_, messages] = self.server.get_agent_recall_cursor(
user_id=self.user_id, agent_id=agent_id, before=before, limit=limit, reverse=True
)
return GetAgentMessagesResponse(messages=messages)
def list_models(self) -> ListModelsResponse:
llm_config = LLMConfigModel(
model=self.server.server_llm_config.model,
model_endpoint=self.server.server_llm_config.model_endpoint,
model_endpoint_type=self.server.server_llm_config.model_endpoint_type,
model_wrapper=self.server.server_llm_config.model_wrapper,
context_window=self.server.server_llm_config.context_window,
)
return ListModelsResponse(models=[llm_config])
def list_attached_sources(self, agent_id: uuid.UUID):
return self.server.list_attached_sources(agent_id=agent_id)