mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
474 lines
19 KiB
Python
474 lines
19 KiB
Python
import json
|
|
import uuid
|
|
from typing import List, Optional
|
|
|
|
import requests
|
|
|
|
from memgpt.constants import JSON_ENSURE_ASCII, NON_USER_MSG_PREFIX
|
|
from memgpt.local_llm.json_parser import clean_json_string_extra_backslash
|
|
from memgpt.local_llm.utils import count_tokens
|
|
from memgpt.models.chat_completion_request import Tool
|
|
from memgpt.models.chat_completion_response import (
|
|
ChatCompletionResponse,
|
|
Choice,
|
|
FunctionCall,
|
|
Message,
|
|
ToolCall,
|
|
UsageStatistics,
|
|
)
|
|
from memgpt.utils import get_tool_call_id, get_utc_time
|
|
|
|
# from memgpt.data_types import ToolCall
|
|
|
|
|
|
SUPPORTED_MODELS = [
|
|
"gemini-pro",
|
|
]
|
|
|
|
|
|
def google_ai_get_model_details(service_endpoint: str, api_key: str, model: str, key_in_header: bool = True) -> List[dict]:
|
|
from memgpt.utils import printd
|
|
|
|
# Two ways to pass the key: https://ai.google.dev/tutorials/setup
|
|
if key_in_header:
|
|
url = f"https://{service_endpoint}.googleapis.com/v1beta/models/{model}"
|
|
headers = {"Content-Type": "application/json", "x-goog-api-key": api_key}
|
|
else:
|
|
url = f"https://{service_endpoint}.googleapis.com/v1beta/models/{model}?key={api_key}"
|
|
headers = {"Content-Type": "application/json"}
|
|
|
|
try:
|
|
response = requests.get(url, headers=headers)
|
|
printd(f"response = {response}")
|
|
response.raise_for_status() # Raises HTTPError for 4XX/5XX status
|
|
response = response.json() # convert to dict from string
|
|
printd(f"response.json = {response}")
|
|
|
|
# Grab the models out
|
|
return response
|
|
|
|
except requests.exceptions.HTTPError as http_err:
|
|
# Handle HTTP errors (e.g., response 4XX, 5XX)
|
|
printd(f"Got HTTPError, exception={http_err}")
|
|
# Print the HTTP status code
|
|
print(f"HTTP Error: {http_err.response.status_code}")
|
|
# Print the response content (error message from server)
|
|
print(f"Message: {http_err.response.text}")
|
|
raise http_err
|
|
|
|
except requests.exceptions.RequestException as req_err:
|
|
# Handle other requests-related errors (e.g., connection error)
|
|
printd(f"Got RequestException, exception={req_err}")
|
|
raise req_err
|
|
|
|
except Exception as e:
|
|
# Handle other potential errors
|
|
printd(f"Got unknown Exception, exception={e}")
|
|
raise e
|
|
|
|
|
|
def google_ai_get_model_context_window(service_endpoint: str, api_key: str, model: str, key_in_header: bool = True) -> int:
|
|
model_details = google_ai_get_model_details(
|
|
service_endpoint=service_endpoint, api_key=api_key, model=model, key_in_header=key_in_header
|
|
)
|
|
# TODO should this be:
|
|
# return model_details["inputTokenLimit"] + model_details["outputTokenLimit"]
|
|
return int(model_details["inputTokenLimit"])
|
|
|
|
|
|
def google_ai_get_model_list(service_endpoint: str, api_key: str, key_in_header: bool = True) -> List[dict]:
|
|
from memgpt.utils import printd
|
|
|
|
# Two ways to pass the key: https://ai.google.dev/tutorials/setup
|
|
if key_in_header:
|
|
url = f"https://{service_endpoint}.googleapis.com/v1beta/models"
|
|
headers = {"Content-Type": "application/json", "x-goog-api-key": api_key}
|
|
else:
|
|
url = f"https://{service_endpoint}.googleapis.com/v1beta/models?key={api_key}"
|
|
headers = {"Content-Type": "application/json"}
|
|
|
|
try:
|
|
response = requests.get(url, headers=headers)
|
|
printd(f"response = {response}")
|
|
response.raise_for_status() # Raises HTTPError for 4XX/5XX status
|
|
response = response.json() # convert to dict from string
|
|
printd(f"response.json = {response}")
|
|
|
|
# Grab the models out
|
|
model_list = response["models"]
|
|
return model_list
|
|
|
|
except requests.exceptions.HTTPError as http_err:
|
|
# Handle HTTP errors (e.g., response 4XX, 5XX)
|
|
printd(f"Got HTTPError, exception={http_err}")
|
|
# Print the HTTP status code
|
|
print(f"HTTP Error: {http_err.response.status_code}")
|
|
# Print the response content (error message from server)
|
|
print(f"Message: {http_err.response.text}")
|
|
raise http_err
|
|
|
|
except requests.exceptions.RequestException as req_err:
|
|
# Handle other requests-related errors (e.g., connection error)
|
|
printd(f"Got RequestException, exception={req_err}")
|
|
raise req_err
|
|
|
|
except Exception as e:
|
|
# Handle other potential errors
|
|
printd(f"Got unknown Exception, exception={e}")
|
|
raise e
|
|
|
|
|
|
def add_dummy_model_messages(messages: List[dict]) -> List[dict]:
|
|
"""Google AI API requires all function call returns are immediately followed by a 'model' role message.
|
|
|
|
In MemGPT, the 'model' will often call a function (e.g. send_message) that itself yields to the user,
|
|
so there is no natural follow-up 'model' role message.
|
|
|
|
To satisfy the Google AI API restrictions, we can add a dummy 'yield' message
|
|
with role == 'model' that is placed in-betweeen and function output
|
|
(role == 'tool') and user message (role == 'user').
|
|
"""
|
|
dummy_yield_message = {"role": "model", "parts": [{"text": f"{NON_USER_MSG_PREFIX}Function call returned, waiting for user response."}]}
|
|
messages_with_padding = []
|
|
for i, message in enumerate(messages):
|
|
messages_with_padding.append(message)
|
|
# Check if the current message role is 'tool' and the next message role is 'user'
|
|
if message["role"] in ["tool", "function"] and (i + 1 < len(messages) and messages[i + 1]["role"] == "user"):
|
|
messages_with_padding.append(dummy_yield_message)
|
|
|
|
return messages_with_padding
|
|
|
|
|
|
# TODO use pydantic model as input
|
|
def to_google_ai(openai_message_dict: dict) -> dict:
|
|
|
|
# TODO supports "parts" as part of multimodal support
|
|
assert not isinstance(openai_message_dict["content"], list), "Multi-part content is message not yet supported"
|
|
if openai_message_dict["role"] == "user":
|
|
google_ai_message_dict = {
|
|
"role": "user",
|
|
"parts": [{"text": openai_message_dict["content"]}],
|
|
}
|
|
elif openai_message_dict["role"] == "assistant":
|
|
google_ai_message_dict = {
|
|
"role": "model", # NOTE: diff
|
|
"parts": [{"text": openai_message_dict["content"]}],
|
|
}
|
|
elif openai_message_dict["role"] == "tool":
|
|
google_ai_message_dict = {
|
|
"role": "function", # NOTE: diff
|
|
"parts": [{"text": openai_message_dict["content"]}],
|
|
}
|
|
else:
|
|
raise ValueError(f"Unsupported conversion (OpenAI -> Google AI) from role {openai_message_dict['role']}")
|
|
|
|
|
|
# TODO convert return type to pydantic
|
|
def convert_tools_to_google_ai_format(tools: List[Tool], inner_thoughts_in_kwargs: Optional[bool] = True) -> List[dict]:
|
|
"""
|
|
OpenAI style:
|
|
"tools": [{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "find_movies",
|
|
"description": "find ....",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
PARAM: {
|
|
"type": PARAM_TYPE, # eg "string"
|
|
"description": PARAM_DESCRIPTION,
|
|
},
|
|
...
|
|
},
|
|
"required": List[str],
|
|
}
|
|
}
|
|
}
|
|
]
|
|
|
|
Google AI style:
|
|
"tools": [{
|
|
"functionDeclarations": [{
|
|
"name": "find_movies",
|
|
"description": "find movie titles currently playing in theaters based on any description, genre, title words, etc.",
|
|
"parameters": {
|
|
"type": "OBJECT",
|
|
"properties": {
|
|
"location": {
|
|
"type": "STRING",
|
|
"description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616"
|
|
},
|
|
"description": {
|
|
"type": "STRING",
|
|
"description": "Any kind of description including category or genre, title words, attributes, etc."
|
|
}
|
|
},
|
|
"required": ["description"]
|
|
}
|
|
}, {
|
|
"name": "find_theaters",
|
|
...
|
|
"""
|
|
function_list = [
|
|
dict(
|
|
name=t.function.name,
|
|
description=t.function.description,
|
|
parameters=t.function.parameters, # TODO need to unpack
|
|
)
|
|
for t in tools
|
|
]
|
|
|
|
# Correct casing + add inner thoughts if needed
|
|
for func in function_list:
|
|
func["parameters"]["type"] = "OBJECT"
|
|
for param_name, param_fields in func["parameters"]["properties"].items():
|
|
param_fields["type"] = param_fields["type"].upper()
|
|
# Add inner thoughts
|
|
if inner_thoughts_in_kwargs:
|
|
from memgpt.local_llm.constants import (
|
|
INNER_THOUGHTS_KWARG,
|
|
INNER_THOUGHTS_KWARG_DESCRIPTION,
|
|
)
|
|
|
|
func["parameters"]["properties"][INNER_THOUGHTS_KWARG] = {
|
|
"type": "STRING",
|
|
"description": INNER_THOUGHTS_KWARG_DESCRIPTION,
|
|
}
|
|
func["parameters"]["required"].append(INNER_THOUGHTS_KWARG)
|
|
|
|
return [{"functionDeclarations": function_list}]
|
|
|
|
|
|
def convert_google_ai_response_to_chatcompletion(
|
|
response_json: dict, # REST response from Google AI API
|
|
model: str, # Required since not returned
|
|
input_messages: Optional[List[dict]] = None, # Required if the API doesn't return UsageMetadata
|
|
pull_inner_thoughts_from_args: Optional[bool] = True,
|
|
) -> ChatCompletionResponse:
|
|
"""Google AI API response format is not the same as ChatCompletion, requires unpacking
|
|
|
|
Example:
|
|
{
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"parts": [
|
|
{
|
|
"text": " OK. Barbie is showing in two theaters in Mountain View, CA: AMC Mountain View 16 and Regal Edwards 14."
|
|
}
|
|
]
|
|
}
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 9,
|
|
"candidatesTokenCount": 27,
|
|
"totalTokenCount": 36
|
|
}
|
|
}
|
|
"""
|
|
try:
|
|
choices = []
|
|
for candidate in response_json["candidates"]:
|
|
content = candidate["content"]
|
|
|
|
role = content["role"]
|
|
assert role == "model", f"Unknown role in response: {role}"
|
|
|
|
parts = content["parts"]
|
|
# TODO support parts / multimodal
|
|
assert len(parts) == 1, f"Multi-part not yet supported:\n{parts}"
|
|
response_message = parts[0]
|
|
|
|
# Convert the actual message style to OpenAI style
|
|
if "functionCall" in response_message and response_message["functionCall"] is not None:
|
|
function_call = response_message["functionCall"]
|
|
assert isinstance(function_call, dict), function_call
|
|
function_name = function_call["name"]
|
|
assert isinstance(function_name, str), function_name
|
|
function_args = function_call["args"]
|
|
assert isinstance(function_args, dict), function_args
|
|
|
|
# NOTE: this also involves stripping the inner monologue out of the function
|
|
if pull_inner_thoughts_from_args:
|
|
from memgpt.local_llm.constants import INNER_THOUGHTS_KWARG
|
|
|
|
assert INNER_THOUGHTS_KWARG in function_args, f"Couldn't find inner thoughts in function args:\n{function_call}"
|
|
inner_thoughts = function_args.pop(INNER_THOUGHTS_KWARG)
|
|
assert inner_thoughts is not None, f"Expected non-null inner thoughts function arg:\n{function_call}"
|
|
else:
|
|
inner_thoughts = None
|
|
|
|
# Google AI API doesn't generate tool call IDs
|
|
openai_response_message = Message(
|
|
role="assistant", # NOTE: "model" -> "assistant"
|
|
content=inner_thoughts,
|
|
tool_calls=[
|
|
ToolCall(
|
|
id=get_tool_call_id(),
|
|
type="function",
|
|
function=FunctionCall(
|
|
name=function_name,
|
|
arguments=clean_json_string_extra_backslash(json.dumps(function_args, ensure_ascii=JSON_ENSURE_ASCII)),
|
|
),
|
|
)
|
|
],
|
|
)
|
|
|
|
else:
|
|
|
|
# Inner thoughts are the content by default
|
|
inner_thoughts = response_message["text"]
|
|
|
|
# Google AI API doesn't generate tool call IDs
|
|
openai_response_message = Message(
|
|
role="assistant", # NOTE: "model" -> "assistant"
|
|
content=inner_thoughts,
|
|
)
|
|
|
|
# Google AI API uses different finish reason strings than OpenAI
|
|
# OpenAI: 'stop', 'length', 'function_call', 'content_filter', null
|
|
# see: https://platform.openai.com/docs/guides/text-generation/chat-completions-api
|
|
# Google AI API: FINISH_REASON_UNSPECIFIED, STOP, MAX_TOKENS, SAFETY, RECITATION, OTHER
|
|
# see: https://ai.google.dev/api/python/google/ai/generativelanguage/Candidate/FinishReason
|
|
finish_reason = candidate["finishReason"]
|
|
if finish_reason == "STOP":
|
|
openai_finish_reason = (
|
|
"function_call"
|
|
if openai_response_message.tool_calls is not None and len(openai_response_message.tool_calls) > 0
|
|
else "stop"
|
|
)
|
|
elif finish_reason == "MAX_TOKENS":
|
|
openai_finish_reason = "length"
|
|
elif finish_reason == "SAFETY":
|
|
openai_finish_reason = "content_filter"
|
|
elif finish_reason == "RECITATION":
|
|
openai_finish_reason = "content_filter"
|
|
else:
|
|
raise ValueError(f"Unrecognized finish reason in Google AI response: {finish_reason}")
|
|
|
|
choices.append(
|
|
Choice(
|
|
finish_reason=openai_finish_reason,
|
|
index=candidate["index"],
|
|
message=openai_response_message,
|
|
)
|
|
)
|
|
|
|
if len(choices) > 1:
|
|
raise UserWarning(f"Unexpected number of candidates in response (expected 1, got {len(choices)})")
|
|
|
|
# NOTE: some of the Google AI APIs show UsageMetadata in the response, but it seems to not exist?
|
|
# "usageMetadata": {
|
|
# "promptTokenCount": 9,
|
|
# "candidatesTokenCount": 27,
|
|
# "totalTokenCount": 36
|
|
# }
|
|
if "usageMetadata" in response_json:
|
|
usage = UsageStatistics(
|
|
prompt_tokens=response_json["usageMetadata"]["promptTokenCount"],
|
|
completion_tokens=response_json["usageMetadata"]["candidatesTokenCount"],
|
|
total_tokens=response_json["usageMetadata"]["totalTokenCount"],
|
|
)
|
|
else:
|
|
# Count it ourselves
|
|
assert input_messages is not None, f"Didn't get UsageMetadata from the API response, so input_messages is required"
|
|
prompt_tokens = count_tokens(
|
|
json.dumps(input_messages, ensure_ascii=JSON_ENSURE_ASCII)
|
|
) # NOTE: this is a very rough approximation
|
|
completion_tokens = count_tokens(
|
|
json.dumps(openai_response_message.model_dump(), ensure_ascii=JSON_ENSURE_ASCII)
|
|
) # NOTE: this is also approximate
|
|
total_tokens = prompt_tokens + completion_tokens
|
|
usage = UsageStatistics(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=total_tokens,
|
|
)
|
|
|
|
response_id = str(uuid.uuid4())
|
|
return ChatCompletionResponse(
|
|
id=response_id,
|
|
choices=choices,
|
|
model=model, # NOTE: Google API doesn't pass back model in the response
|
|
created=get_utc_time(),
|
|
usage=usage,
|
|
)
|
|
except KeyError as e:
|
|
raise e
|
|
|
|
|
|
# TODO convert 'data' type to pydantic
|
|
def google_ai_chat_completions_request(
|
|
service_endpoint: str,
|
|
model: str,
|
|
api_key: str,
|
|
data: dict,
|
|
key_in_header: bool = True,
|
|
add_postfunc_model_messages: bool = True,
|
|
# NOTE: Google AI API doesn't support mixing parts 'text' and 'function',
|
|
# so there's no clean way to put inner thoughts in the same message as a function call
|
|
inner_thoughts_in_kwargs: bool = True,
|
|
) -> ChatCompletionResponse:
|
|
"""https://ai.google.dev/docs/function_calling
|
|
|
|
From https://ai.google.dev/api/rest#service-endpoint:
|
|
"A service endpoint is a base URL that specifies the network address of an API service.
|
|
One service might have multiple service endpoints.
|
|
This service has the following service endpoint and all URIs below are relative to this service endpoint:
|
|
https://xxx.googleapis.com
|
|
"""
|
|
from memgpt.utils import printd
|
|
|
|
assert service_endpoint is not None, "Missing service_endpoint when calling Google AI"
|
|
assert api_key is not None, "Missing api_key when calling Google AI"
|
|
assert model in SUPPORTED_MODELS, f"Model '{model}' not in supported models: {', '.join(SUPPORTED_MODELS)}"
|
|
|
|
# Two ways to pass the key: https://ai.google.dev/tutorials/setup
|
|
if key_in_header:
|
|
url = f"https://{service_endpoint}.googleapis.com/v1beta/models/{model}:generateContent"
|
|
headers = {"Content-Type": "application/json", "x-goog-api-key": api_key}
|
|
else:
|
|
url = f"https://{service_endpoint}.googleapis.com/v1beta/models/{model}:generateContent?key={api_key}"
|
|
headers = {"Content-Type": "application/json"}
|
|
|
|
# data["contents"][-1]["role"] = "model"
|
|
if add_postfunc_model_messages:
|
|
data["contents"] = add_dummy_model_messages(data["contents"])
|
|
|
|
printd(f"Sending request to {url}")
|
|
try:
|
|
response = requests.post(url, headers=headers, json=data)
|
|
printd(f"response = {response}")
|
|
response.raise_for_status() # Raises HTTPError for 4XX/5XX status
|
|
response = response.json() # convert to dict from string
|
|
printd(f"response.json = {response}")
|
|
|
|
# Convert Google AI response to ChatCompletion style
|
|
return convert_google_ai_response_to_chatcompletion(
|
|
response_json=response,
|
|
model=model,
|
|
input_messages=data["contents"],
|
|
pull_inner_thoughts_from_args=inner_thoughts_in_kwargs,
|
|
)
|
|
|
|
except requests.exceptions.HTTPError as http_err:
|
|
# Handle HTTP errors (e.g., response 4XX, 5XX)
|
|
printd(f"Got HTTPError, exception={http_err}, payload={data}")
|
|
# Print the HTTP status code
|
|
print(f"HTTP Error: {http_err.response.status_code}")
|
|
# Print the response content (error message from server)
|
|
print(f"Message: {http_err.response.text}")
|
|
raise http_err
|
|
|
|
except requests.exceptions.RequestException as req_err:
|
|
# Handle other requests-related errors (e.g., connection error)
|
|
printd(f"Got RequestException, exception={req_err}")
|
|
raise req_err
|
|
|
|
except Exception as e:
|
|
# Handle other potential errors
|
|
printd(f"Got unknown Exception, exception={e}")
|
|
raise e
|