mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
488 lines
18 KiB
Python
488 lines
18 KiB
Python
""" This module contains the data types used by MemGPT. Each data type must include a function to create a DB model. """
|
|
import uuid
|
|
from datetime import datetime
|
|
from abc import abstractmethod
|
|
from typing import Optional, List, Dict
|
|
import numpy as np
|
|
|
|
from memgpt.constants import DEFAULT_HUMAN, DEFAULT_MEMGPT_MODEL, DEFAULT_PERSONA, DEFAULT_PRESET, LLM_MAX_TOKENS, MAX_EMBEDDING_DIM
|
|
from memgpt.utils import get_local_time, format_datetime
|
|
from memgpt.models import chat_completion_response
|
|
|
|
|
|
class Record:
|
|
"""
|
|
Base class for an agent's memory unit. Each memory unit is represented in the database as a single row.
|
|
Memory units are searched over by functions defined in the memory classes
|
|
"""
|
|
|
|
def __init__(self, id: Optional[uuid.UUID] = None):
|
|
if id is None:
|
|
self.id = uuid.uuid4()
|
|
else:
|
|
self.id = id
|
|
|
|
assert isinstance(self.id, uuid.UUID), f"UUID {self.id} must be a UUID type"
|
|
|
|
|
|
class ToolCall(object):
|
|
def __init__(
|
|
self,
|
|
id: str,
|
|
# TODO should we include this? it's fixed to 'function' only (for now) in OAI schema
|
|
# NOTE: called ToolCall.type in official OpenAI schema
|
|
tool_call_type: str, # only 'function' is supported
|
|
# function: { 'name': ..., 'arguments': ...}
|
|
function: Dict[str, str],
|
|
):
|
|
self.id = id
|
|
self.tool_call_type = tool_call_type
|
|
self.function = function
|
|
|
|
def to_dict(self):
|
|
return {
|
|
"id": self.id,
|
|
"type": self.tool_call_type,
|
|
"function": self.function,
|
|
}
|
|
|
|
|
|
class Message(Record):
|
|
"""Representation of a message sent.
|
|
|
|
Messages can be:
|
|
- agent->user (role=='agent')
|
|
- user->agent and system->agent (role=='user')
|
|
- or function/tool call returns (role=='function'/'tool').
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
user_id: uuid.UUID,
|
|
agent_id: uuid.UUID,
|
|
role: str,
|
|
text: str,
|
|
model: Optional[str] = None, # model used to make function call
|
|
name: Optional[str] = None, # optional participant name
|
|
created_at: Optional[str] = None,
|
|
tool_calls: Optional[List[ToolCall]] = None, # list of tool calls requested
|
|
tool_call_id: Optional[str] = None,
|
|
embedding: Optional[np.ndarray] = None,
|
|
embedding_dim: Optional[int] = None,
|
|
embedding_model: Optional[str] = None,
|
|
id: Optional[uuid.UUID] = None,
|
|
):
|
|
super().__init__(id)
|
|
self.user_id = user_id
|
|
self.agent_id = agent_id
|
|
self.text = text
|
|
self.model = model # model name (e.g. gpt-4)
|
|
self.created_at = datetime.now().astimezone() if created_at is None else created_at
|
|
|
|
# openai info
|
|
assert role in ["system", "assistant", "user", "tool"]
|
|
self.role = role # role (agent/user/function)
|
|
self.name = name
|
|
|
|
# pad and store embeddings
|
|
if isinstance(embedding, list):
|
|
embedding = np.array(embedding)
|
|
self.embedding = (
|
|
np.pad(embedding, (0, MAX_EMBEDDING_DIM - embedding.shape[0]), mode="constant").tolist() if embedding is not None else None
|
|
)
|
|
self.embedding_dim = embedding_dim
|
|
self.embedding_model = embedding_model
|
|
|
|
if self.embedding is not None:
|
|
assert self.embedding_dim, f"Must specify embedding_dim if providing an embedding"
|
|
assert self.embedding_model, f"Must specify embedding_model if providing an embedding"
|
|
assert len(self.embedding) == MAX_EMBEDDING_DIM, f"Embedding must be of length {MAX_EMBEDDING_DIM}"
|
|
|
|
# tool (i.e. function) call info (optional)
|
|
|
|
# if role == "assistant", this MAY be specified
|
|
# if role != "assistant", this must be null
|
|
assert tool_calls is None or isinstance(tool_calls, list)
|
|
self.tool_calls = tool_calls
|
|
|
|
# if role == "tool", then this must be specified
|
|
# if role != "tool", this must be null
|
|
if role == "tool":
|
|
assert tool_call_id is not None
|
|
else:
|
|
assert tool_call_id is None
|
|
self.tool_call_id = tool_call_id
|
|
|
|
# def __repr__(self):
|
|
# pass
|
|
|
|
@staticmethod
|
|
def dict_to_message(
|
|
user_id: uuid.UUID,
|
|
agent_id: uuid.UUID,
|
|
openai_message_dict: dict,
|
|
model: Optional[str] = None, # model used to make function call
|
|
allow_functions_style: bool = False, # allow deprecated functions style?
|
|
):
|
|
"""Convert a ChatCompletion message object into a Message object (synced to DB)"""
|
|
|
|
# If we're going from deprecated function form
|
|
if openai_message_dict["role"] == "function":
|
|
if not allow_functions_style:
|
|
raise DeprecationWarning(openai_message_dict)
|
|
assert "tool_call_id" in openai_message_dict, openai_message_dict
|
|
|
|
# Convert from 'function' response to a 'tool' response
|
|
# NOTE: this does not conventionally include a tool_call_id, it's on the caster to provide it
|
|
return Message(
|
|
user_id=user_id,
|
|
agent_id=agent_id,
|
|
model=model,
|
|
# standard fields expected in an OpenAI ChatCompletion message object
|
|
role="tool", # NOTE
|
|
text=openai_message_dict["content"],
|
|
name=openai_message_dict["name"] if "name" in openai_message_dict else None,
|
|
tool_calls=openai_message_dict["tool_calls"] if "tool_calls" in openai_message_dict else None,
|
|
tool_call_id=openai_message_dict["tool_call_id"] if "tool_call_id" in openai_message_dict else None,
|
|
)
|
|
|
|
elif "function_call" in openai_message_dict and openai_message_dict["function_call"] is not None:
|
|
if not allow_functions_style:
|
|
raise DeprecationWarning(openai_message_dict)
|
|
assert openai_message_dict["role"] == "assistant", openai_message_dict
|
|
assert "tool_call_id" in openai_message_dict, openai_message_dict
|
|
|
|
# Convert a function_call (from an assistant message) into a tool_call
|
|
# NOTE: this does not conventionally include a tool_call_id (ToolCall.id), it's on the caster to provide it
|
|
tool_calls = [
|
|
ToolCall(
|
|
id=openai_message_dict["tool_call_id"], # NOTE: unconventional source, not to spec
|
|
tool_call_type="function",
|
|
function={
|
|
"name": openai_message_dict["function_call"]["name"],
|
|
"arguments": openai_message_dict["function_call"]["arguments"],
|
|
},
|
|
)
|
|
]
|
|
|
|
return Message(
|
|
user_id=user_id,
|
|
agent_id=agent_id,
|
|
model=model,
|
|
# standard fields expected in an OpenAI ChatCompletion message object
|
|
role=openai_message_dict["role"],
|
|
text=openai_message_dict["content"],
|
|
name=openai_message_dict["name"] if "name" in openai_message_dict else None,
|
|
tool_calls=tool_calls,
|
|
tool_call_id=None, # NOTE: None, since this field is only non-null for role=='tool'
|
|
)
|
|
|
|
else:
|
|
# Basic sanity check
|
|
if openai_message_dict["role"] == "tool":
|
|
assert "tool_call_id" in openai_message_dict and openai_message_dict["tool_call_id"] is not None, openai_message_dict
|
|
else:
|
|
if "tool_call_id" in openai_message_dict:
|
|
assert openai_message_dict["tool_call_id"] is None, openai_message_dict
|
|
|
|
if "tool_calls" in openai_message_dict and openai_message_dict["tool_calls"] is not None:
|
|
assert openai_message_dict["role"] == "assistant", openai_message_dict
|
|
|
|
tool_calls = [
|
|
ToolCall(id=tool_call["id"], tool_call_type=tool_call["type"], function=tool_call["function"])
|
|
for tool_call in openai_message_dict["tool_calls"]
|
|
]
|
|
else:
|
|
tool_calls = None
|
|
|
|
# If we're going from tool-call style
|
|
return Message(
|
|
user_id=user_id,
|
|
agent_id=agent_id,
|
|
model=model,
|
|
# standard fields expected in an OpenAI ChatCompletion message object
|
|
role=openai_message_dict["role"],
|
|
text=openai_message_dict["content"],
|
|
name=openai_message_dict["name"] if "name" in openai_message_dict else None,
|
|
tool_calls=tool_calls,
|
|
tool_call_id=openai_message_dict["tool_call_id"] if "tool_call_id" in openai_message_dict else None,
|
|
)
|
|
|
|
def to_openai_dict(self):
|
|
"""Go from Message class to ChatCompletion message object"""
|
|
|
|
# TODO change to pydantic casting, eg `return SystemMessageModel(self)`
|
|
|
|
if self.role == "system":
|
|
assert all([v is not None for v in [self.text, self.role]]), vars(self)
|
|
openai_message = {
|
|
"content": self.text,
|
|
"role": self.role,
|
|
}
|
|
# Optional field, do not include if null
|
|
if self.name is not None:
|
|
openai_message["name"] = self.name
|
|
|
|
elif self.role == "user":
|
|
assert all([v is not None for v in [self.text, self.role]]), vars(self)
|
|
openai_message = {
|
|
"content": self.text,
|
|
"role": self.role,
|
|
}
|
|
# Optional field, do not include if null
|
|
if self.name is not None:
|
|
openai_message["name"] = self.name
|
|
|
|
elif self.role == "assistant":
|
|
assert all([v is not None for v in [self.text, self.role]]), vars(self)
|
|
openai_message = {
|
|
"content": self.text,
|
|
"role": self.role,
|
|
}
|
|
# Optional fields, do not include if null
|
|
if self.name is not None:
|
|
openai_message["name"] = self.name
|
|
if self.tool_calls is not None:
|
|
openai_message["tool_calls"] = [tool_call.to_dict() for tool_call in self.tool_calls]
|
|
|
|
elif self.role == "tool":
|
|
assert all([v is not None for v in [self.text, self.role, self.tool_call_id]]), vars(self)
|
|
openai_message = {
|
|
"content": self.text,
|
|
"role": self.role,
|
|
"tool_call_id": self.tool_call_id,
|
|
}
|
|
|
|
else:
|
|
raise ValueError(self.role)
|
|
|
|
return openai_message
|
|
|
|
|
|
class Document(Record):
|
|
"""A document represent a document loaded into MemGPT, which is broken down into passages."""
|
|
|
|
def __init__(self, user_id: str, text: str, data_source: str, document_id: Optional[str] = None):
|
|
super().__init__(id)
|
|
self.user_id = user_id
|
|
self.text = text
|
|
self.document_id = document_id
|
|
self.data_source = data_source
|
|
# TODO: add optional embedding?
|
|
|
|
# def __repr__(self) -> str:
|
|
# pass
|
|
|
|
|
|
class Passage(Record):
|
|
"""A passage is a single unit of memory, and a standard format accross all storage backends.
|
|
|
|
It is a string of text with an assoidciated embedding.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
user_id: uuid.UUID,
|
|
text: str,
|
|
agent_id: Optional[uuid.UUID] = None, # set if contained in agent memory
|
|
embedding: Optional[np.ndarray] = None,
|
|
embedding_dim: Optional[int] = None,
|
|
embedding_model: Optional[str] = None,
|
|
data_source: Optional[str] = None, # None if created by agent
|
|
doc_id: Optional[uuid.UUID] = None,
|
|
id: Optional[uuid.UUID] = None,
|
|
metadata: Optional[dict] = {},
|
|
):
|
|
super().__init__(id)
|
|
self.user_id = user_id
|
|
self.agent_id = agent_id
|
|
self.text = text
|
|
self.data_source = data_source
|
|
self.doc_id = doc_id
|
|
self.metadata = metadata
|
|
|
|
# pad and store embeddings
|
|
if isinstance(embedding, list):
|
|
embedding = np.array(embedding)
|
|
self.embedding = (
|
|
np.pad(embedding, (0, MAX_EMBEDDING_DIM - embedding.shape[0]), mode="constant").tolist() if embedding is not None else None
|
|
)
|
|
self.embedding_dim = embedding_dim
|
|
self.embedding_model = embedding_model
|
|
|
|
if self.embedding is not None:
|
|
assert self.embedding_dim, f"Must specify embedding_dim if providing an embedding"
|
|
assert self.embedding_model, f"Must specify embedding_model if providing an embedding"
|
|
assert len(self.embedding) == MAX_EMBEDDING_DIM, f"Embedding must be of length {MAX_EMBEDDING_DIM}"
|
|
|
|
assert isinstance(self.user_id, uuid.UUID), f"UUID {self.user_id} must be a UUID type"
|
|
assert not agent_id or isinstance(self.agent_id, uuid.UUID), f"UUID {self.agent_id} must be a UUID type"
|
|
assert not doc_id or isinstance(self.doc_id, uuid.UUID), f"UUID {self.doc_id} must be a UUID type"
|
|
|
|
|
|
class LLMConfig:
|
|
def __init__(
|
|
self,
|
|
model: Optional[str] = "gpt-4",
|
|
model_endpoint_type: Optional[str] = "openai",
|
|
model_endpoint: Optional[str] = "https://api.openai.com/v1",
|
|
model_wrapper: Optional[str] = None,
|
|
context_window: Optional[int] = None,
|
|
):
|
|
self.model = model
|
|
self.model_endpoint_type = model_endpoint_type
|
|
self.model_endpoint = model_endpoint
|
|
self.model_wrapper = model_wrapper
|
|
self.context_window = context_window
|
|
|
|
if context_window is None:
|
|
self.context_window = LLM_MAX_TOKENS[self.model] if self.model in LLM_MAX_TOKENS else LLM_MAX_TOKENS["DEFAULT"]
|
|
else:
|
|
self.context_window = context_window
|
|
|
|
|
|
class EmbeddingConfig:
|
|
def __init__(
|
|
self,
|
|
embedding_endpoint_type: Optional[str] = "openai",
|
|
embedding_endpoint: Optional[str] = "https://api.openai.com/v1",
|
|
embedding_model: Optional[str] = "text-embedding-ada-002",
|
|
embedding_dim: Optional[int] = 1536,
|
|
embedding_chunk_size: Optional[int] = 300,
|
|
):
|
|
self.embedding_endpoint_type = embedding_endpoint_type
|
|
self.embedding_endpoint = embedding_endpoint
|
|
self.embedding_model = embedding_model
|
|
self.embedding_dim = embedding_dim
|
|
self.embedding_chunk_size = embedding_chunk_size
|
|
|
|
# fields cannot be set to None
|
|
assert self.embedding_endpoint_type
|
|
assert self.embedding_dim
|
|
assert self.embedding_chunk_size
|
|
|
|
|
|
class OpenAIEmbeddingConfig(EmbeddingConfig):
|
|
def __init__(self, openai_key: Optional[str] = None, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.openai_key = openai_key
|
|
|
|
|
|
class AzureEmbeddingConfig(EmbeddingConfig):
|
|
def __init__(
|
|
self,
|
|
azure_key: Optional[str] = None,
|
|
azure_endpoint: Optional[str] = None,
|
|
azure_version: Optional[str] = None,
|
|
azure_deployment: Optional[str] = None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.azure_key = azure_key
|
|
self.azure_endpoint = azure_endpoint
|
|
self.azure_version = azure_version
|
|
self.azure_deployment = azure_deployment
|
|
|
|
|
|
class User:
|
|
|
|
"""Defines user and default configurations"""
|
|
|
|
# TODO: make sure to encrypt/decrypt keys before storing in DB
|
|
|
|
def __init__(
|
|
self,
|
|
# name: str,
|
|
id: Optional[uuid.UUID] = None,
|
|
default_preset=DEFAULT_PRESET,
|
|
default_persona=DEFAULT_PERSONA,
|
|
default_human=DEFAULT_HUMAN,
|
|
default_agent=None,
|
|
# other
|
|
policies_accepted=False,
|
|
):
|
|
if id is None:
|
|
self.id = uuid.uuid4()
|
|
else:
|
|
self.id = id
|
|
assert isinstance(self.id, uuid.UUID), f"UUID {self.id} must be a UUID type"
|
|
|
|
self.default_preset = default_preset
|
|
self.default_persona = default_persona
|
|
self.default_human = default_human
|
|
self.default_agent = default_agent
|
|
|
|
# misc
|
|
self.policies_accepted = policies_accepted
|
|
|
|
|
|
class AgentState:
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
user_id: uuid.UUID,
|
|
persona: str, # the filename where the persona was originally sourced from
|
|
human: str, # the filename where the human was originally sourced from
|
|
llm_config: LLMConfig,
|
|
embedding_config: EmbeddingConfig,
|
|
preset: str,
|
|
# (in-context) state contains:
|
|
# persona: str # the current persona text
|
|
# human: str # the current human text
|
|
# system: str, # system prompt (not required if initializing with a preset)
|
|
# functions: dict, # schema definitions ONLY (function code linked at runtime)
|
|
# messages: List[dict], # in-context messages
|
|
id: Optional[uuid.UUID] = None,
|
|
state: Optional[dict] = None,
|
|
created_at: Optional[str] = None,
|
|
):
|
|
if id is None:
|
|
self.id = uuid.uuid4()
|
|
else:
|
|
self.id = id
|
|
assert isinstance(self.id, uuid.UUID), f"UUID {self.id} must be a UUID type"
|
|
assert isinstance(user_id, uuid.UUID), f"UUID {user_id} must be a UUID type"
|
|
|
|
# TODO(swooders) we need to handle the case where name is None here
|
|
# in AgentConfig we autogenerate a name, not sure what the correct thing w/ DBs is, what about NounAdjective combos? Like giphy does? BoredGiraffe etc
|
|
self.name = name
|
|
self.user_id = user_id
|
|
self.preset = preset
|
|
self.persona = persona
|
|
self.human = human
|
|
|
|
self.llm_config = llm_config
|
|
self.embedding_config = embedding_config
|
|
|
|
self.created_at = created_at if created_at is not None else datetime.now()
|
|
|
|
# state
|
|
self.state = {} if not state else state
|
|
|
|
|
|
class Source:
|
|
def __init__(
|
|
self,
|
|
user_id: uuid.UUID,
|
|
name: str,
|
|
created_at: Optional[str] = None,
|
|
id: Optional[uuid.UUID] = None,
|
|
# embedding info
|
|
embedding_model: Optional[str] = None,
|
|
embedding_dim: Optional[int] = None,
|
|
):
|
|
if id is None:
|
|
self.id = uuid.uuid4()
|
|
else:
|
|
self.id = id
|
|
assert isinstance(self.id, uuid.UUID), f"UUID {self.id} must be a UUID type"
|
|
assert isinstance(user_id, uuid.UUID), f"UUID {user_id} must be a UUID type"
|
|
|
|
self.name = name
|
|
self.user_id = user_id
|
|
self.created_at = created_at
|
|
|
|
# embedding info (optional)
|
|
self.embedding_dim = embedding_dim
|
|
self.embedding_model = embedding_model
|