mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00

Co-authored-by: Charles Packer <packercharles@gmail.com> Co-authored-by: Shubham Naik <shubham.naik10@gmail.com> Co-authored-by: Shubham Naik <shub@memgpt.ai>
146 lines
4.4 KiB
Python
146 lines
4.4 KiB
Python
import datetime
|
|
import os
|
|
from importlib import util
|
|
from typing import Dict, Iterator, List, Tuple
|
|
|
|
import requests
|
|
|
|
from letta.cli.cli import QuickstartChoice, quickstart
|
|
from letta.config import LettaConfig
|
|
from letta.data_sources.connectors import DataConnector
|
|
from letta.schemas.document import Document
|
|
from letta.settings import TestSettings
|
|
|
|
from .constants import TIMEOUT
|
|
|
|
|
|
class DummyDataConnector(DataConnector):
|
|
"""Fake data connector for texting which yields document/passage texts from a provided list"""
|
|
|
|
def __init__(self, texts: List[str]):
|
|
self.texts = texts
|
|
|
|
def generate_documents(self) -> Iterator[Tuple[str, Dict]]:
|
|
for text in self.texts:
|
|
yield text, {"metadata": "dummy"}
|
|
|
|
def generate_passages(self, documents: List[Document], chunk_size: int = 1024) -> Iterator[Tuple[str | Dict]]:
|
|
for doc in documents:
|
|
yield doc.text, doc.metadata_
|
|
|
|
|
|
def create_config(endpoint="openai"):
|
|
"""Create config file matching quickstart option"""
|
|
if endpoint == "openai":
|
|
quickstart(QuickstartChoice.openai)
|
|
elif endpoint == "letta_hosted":
|
|
quickstart(QuickstartChoice.letta_hosted)
|
|
else:
|
|
raise ValueError(f"Invalid endpoint {endpoint}")
|
|
|
|
|
|
def wipe_config():
|
|
test_settings = TestSettings()
|
|
config_path = os.path.join(test_settings.letta_dir, "config")
|
|
if os.path.exists(config_path):
|
|
# delete
|
|
os.remove(config_path)
|
|
|
|
|
|
def wipe_letta_home():
|
|
"""Wipes ~/.letta (moves to a backup), and initializes a new ~/.letta dir"""
|
|
|
|
# Get the current timestamp in a readable format (e.g., YYYYMMDD_HHMMSS)
|
|
timestamp = datetime.datetime.now(datetime.timezone.utc).strftime("%Y%m%d_%H%M%S")
|
|
|
|
# Construct the new backup directory name with the timestamp
|
|
backup_dir = f"~/.letta_test_backup_{timestamp}"
|
|
|
|
# Use os.system to execute the 'mv' command
|
|
os.system(f"mv ~/.letta {backup_dir}")
|
|
|
|
# Setup the initial directory
|
|
test_settings = TestSettings()
|
|
config_path = os.path.join(test_settings.letta_dir, "config")
|
|
config = LettaConfig(config_path=config_path)
|
|
config.create_config_dir()
|
|
|
|
|
|
def configure_letta_localllm():
|
|
import pexpect
|
|
|
|
wipe_config()
|
|
child = pexpect.spawn("letta configure")
|
|
|
|
child.expect("Select LLM inference provider", timeout=TIMEOUT)
|
|
child.send("\x1b[B") # Send the down arrow key
|
|
child.send("\x1b[B") # Send the down arrow key
|
|
child.sendline()
|
|
|
|
child.expect("Select LLM backend", timeout=TIMEOUT)
|
|
child.sendline()
|
|
|
|
child.expect("Enter default endpoint", timeout=TIMEOUT)
|
|
child.sendline()
|
|
|
|
child.expect("Select default model wrapper", timeout=TIMEOUT)
|
|
child.sendline()
|
|
|
|
child.expect("Select your model's context window", timeout=TIMEOUT)
|
|
child.sendline()
|
|
|
|
child.expect("Select embedding provider", timeout=TIMEOUT)
|
|
child.send("\x1b[B") # Send the down arrow key
|
|
child.send("\x1b[B") # Send the down arrow key
|
|
child.send("\x1b[B") # Send the down arrow key
|
|
child.sendline()
|
|
|
|
child.expect("Select default preset", timeout=TIMEOUT)
|
|
child.sendline()
|
|
|
|
child.expect("Select default persona", timeout=TIMEOUT)
|
|
child.sendline()
|
|
|
|
child.expect("Select default human", timeout=TIMEOUT)
|
|
child.sendline()
|
|
|
|
child.expect("Select storage backend for archival data", timeout=TIMEOUT)
|
|
child.sendline()
|
|
|
|
child.sendline()
|
|
|
|
child.expect(pexpect.EOF, timeout=TIMEOUT) # Wait for child to exit
|
|
child.close()
|
|
assert child.isalive() is False, "CLI should have terminated."
|
|
assert child.exitstatus == 0, "CLI did not exit cleanly."
|
|
|
|
|
|
def configure_letta(enable_openai=False, enable_azure=False):
|
|
if enable_openai:
|
|
raise NotImplementedError
|
|
elif enable_azure:
|
|
raise NotImplementedError
|
|
else:
|
|
configure_letta_localllm()
|
|
|
|
|
|
def qdrant_server_running() -> bool:
|
|
"""Check if Qdrant server is running."""
|
|
|
|
try:
|
|
response = requests.get("http://localhost:6333", timeout=10.0)
|
|
response_json = response.json()
|
|
return response_json.get("title") == "qdrant - vector search engine"
|
|
except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
|
|
return False
|
|
|
|
|
|
def with_qdrant_storage(storage: list[str]):
|
|
"""If Qdrant server is running and `qdrant_client` is installed,
|
|
append `'qdrant'` to the storage list"""
|
|
|
|
if util.find_spec("qdrant_client") is not None and qdrant_server_running():
|
|
storage.append("qdrant")
|
|
|
|
return storage
|