MemGPT/letta/server/server.py
2025-02-12 18:06:26 -08:00

1387 lines
59 KiB
Python

# inspecting tools
import asyncio
import json
import os
import traceback
import warnings
from abc import abstractmethod
from datetime import datetime
from typing import Callable, Dict, List, Optional, Tuple, Union
from composio.client import Composio
from composio.client.collections import ActionModel, AppModel
from fastapi import HTTPException
from fastapi.responses import StreamingResponse
import letta.constants as constants
import letta.server.utils as server_utils
import letta.system as system
from letta.agent import Agent, save_agent
from letta.chat_only_agent import ChatOnlyAgent
from letta.data_sources.connectors import DataConnector, load_data
# TODO use custom interface
from letta.interface import AgentInterface # abstract
from letta.interface import CLIInterface # for printing to terminal
from letta.log import get_logger
from letta.offline_memory_agent import OfflineMemoryAgent
from letta.orm import Base
from letta.orm.errors import NoResultFound
from letta.schemas.agent import AgentState, AgentType, CreateAgent
from letta.schemas.block import BlockUpdate
from letta.schemas.embedding_config import EmbeddingConfig
# openai schemas
from letta.schemas.enums import JobStatus, MessageStreamStatus
from letta.schemas.environment_variables import SandboxEnvironmentVariableCreate
from letta.schemas.job import Job, JobUpdate
from letta.schemas.letta_message import LegacyLettaMessage, LettaMessage, ToolReturnMessage
from letta.schemas.letta_response import LettaResponse
from letta.schemas.llm_config import LLMConfig
from letta.schemas.memory import ArchivalMemorySummary, ContextWindowOverview, Memory, RecallMemorySummary
from letta.schemas.message import Message, MessageCreate, MessageRole, MessageUpdate, TextContent
from letta.schemas.organization import Organization
from letta.schemas.passage import Passage
from letta.schemas.providers import (
AnthropicBedrockProvider,
AnthropicProvider,
AzureProvider,
GoogleAIProvider,
GoogleVertexProvider,
GroqProvider,
LettaProvider,
LMStudioOpenAIProvider,
OllamaProvider,
OpenAIProvider,
Provider,
TogetherProvider,
VLLMChatCompletionsProvider,
VLLMCompletionsProvider,
)
from letta.schemas.sandbox_config import SandboxType
from letta.schemas.source import Source
from letta.schemas.tool import Tool
from letta.schemas.usage import LettaUsageStatistics
from letta.schemas.user import User
from letta.server.rest_api.chat_completions_interface import ChatCompletionsStreamingInterface
from letta.server.rest_api.interface import StreamingServerInterface
from letta.server.rest_api.utils import sse_async_generator
from letta.services.agent_manager import AgentManager
from letta.services.block_manager import BlockManager
from letta.services.job_manager import JobManager
from letta.services.message_manager import MessageManager
from letta.services.organization_manager import OrganizationManager
from letta.services.passage_manager import PassageManager
from letta.services.per_agent_lock_manager import PerAgentLockManager
from letta.services.provider_manager import ProviderManager
from letta.services.sandbox_config_manager import SandboxConfigManager
from letta.services.source_manager import SourceManager
from letta.services.step_manager import StepManager
from letta.services.tool_execution_sandbox import ToolExecutionSandbox
from letta.services.tool_manager import ToolManager
from letta.services.user_manager import UserManager
from letta.utils import get_friendly_error_msg, get_utc_time, json_dumps, json_loads
logger = get_logger(__name__)
class Server(object):
"""Abstract server class that supports multi-agent multi-user"""
@abstractmethod
def list_agents(self, user_id: str) -> dict:
"""List all available agents to a user"""
raise NotImplementedError
@abstractmethod
def get_agent_memory(self, user_id: str, agent_id: str) -> dict:
"""Return the memory of an agent (core memory + non-core statistics)"""
raise NotImplementedError
@abstractmethod
def get_server_config(self, user_id: str) -> dict:
"""Return the base config"""
raise NotImplementedError
@abstractmethod
def update_agent_core_memory(self, user_id: str, agent_id: str, label: str, actor: User) -> Memory:
"""Update the agents core memory block, return the new state"""
raise NotImplementedError
@abstractmethod
def create_agent(
self,
request: CreateAgent,
actor: User,
# interface
interface: Union[AgentInterface, None] = None,
) -> AgentState:
"""Create a new agent using a config"""
raise NotImplementedError
@abstractmethod
def user_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process a message from the user, internally calls step"""
raise NotImplementedError
@abstractmethod
def system_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process a message from the system, internally calls step"""
raise NotImplementedError
@abstractmethod
def send_messages(self, user_id: str, agent_id: str, messages: Union[MessageCreate, List[Message]]) -> None:
"""Send a list of messages to the agent"""
raise NotImplementedError
@abstractmethod
def run_command(self, user_id: str, agent_id: str, command: str) -> Union[str, None]:
"""Run a command on the agent, e.g. /memory
May return a string with a message generated by the command
"""
raise NotImplementedError
from contextlib import contextmanager
from rich.console import Console
from rich.panel import Panel
from rich.text import Text
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from letta.config import LettaConfig
# NOTE: hack to see if single session management works
from letta.settings import model_settings, settings, tool_settings
config = LettaConfig.load()
def print_sqlite_schema_error():
"""Print a formatted error message for SQLite schema issues"""
console = Console()
error_text = Text()
error_text.append("Existing SQLite DB schema is invalid, and schema migrations are not supported for SQLite. ", style="bold red")
error_text.append("To have migrations supported between Letta versions, please run Letta with Docker (", style="white")
error_text.append("https://docs.letta.com/server/docker", style="blue underline")
error_text.append(") or use Postgres by setting ", style="white")
error_text.append("LETTA_PG_URI", style="yellow")
error_text.append(".\n\n", style="white")
error_text.append("If you wish to keep using SQLite, you can reset your database by removing the DB file with ", style="white")
error_text.append("rm ~/.letta/sqlite.db", style="yellow")
error_text.append(" or downgrade to your previous version of Letta.", style="white")
console.print(Panel(error_text, border_style="red"))
@contextmanager
def db_error_handler():
"""Context manager for handling database errors"""
try:
yield
except Exception as e:
# Handle other SQLAlchemy errors
print(e)
print_sqlite_schema_error()
# raise ValueError(f"SQLite DB error: {str(e)}")
exit(1)
if settings.letta_pg_uri_no_default:
print("Creating postgres engine")
config.recall_storage_type = "postgres"
config.recall_storage_uri = settings.letta_pg_uri_no_default
config.archival_storage_type = "postgres"
config.archival_storage_uri = settings.letta_pg_uri_no_default
# create engine
engine = create_engine(
settings.letta_pg_uri,
pool_size=settings.pg_pool_size,
max_overflow=settings.pg_max_overflow,
pool_timeout=settings.pg_pool_timeout,
pool_recycle=settings.pg_pool_recycle,
echo=settings.pg_echo,
)
else:
# TODO: don't rely on config storage
engine_path = "sqlite:///" + os.path.join(config.recall_storage_path, "sqlite.db")
logger.info("Creating sqlite engine " + engine_path)
engine = create_engine(engine_path)
# Store the original connect method
original_connect = engine.connect
def wrapped_connect(*args, **kwargs):
with db_error_handler():
# Get the connection
connection = original_connect(*args, **kwargs)
# Store the original execution method
original_execute = connection.execute
# Wrap the execute method of the connection
def wrapped_execute(*args, **kwargs):
with db_error_handler():
return original_execute(*args, **kwargs)
# Replace the connection's execute method
connection.execute = wrapped_execute
return connection
# Replace the engine's connect method
engine.connect = wrapped_connect
Base.metadata.create_all(bind=engine)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
# Dependency
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
from contextlib import contextmanager
db_context = contextmanager(get_db)
class SyncServer(Server):
"""Simple single-threaded / blocking server process"""
def __init__(
self,
chaining: bool = True,
max_chaining_steps: Optional[bool] = None,
default_interface_factory: Callable[[], AgentInterface] = lambda: CLIInterface(),
init_with_default_org_and_user: bool = True,
# default_interface: AgentInterface = CLIInterface(),
# default_persistence_manager_cls: PersistenceManager = LocalStateManager,
# auth_mode: str = "none", # "none, "jwt", "external"
):
"""Server process holds in-memory agents that are being run"""
# chaining = whether or not to run again if request_heartbeat=true
self.chaining = chaining
# if chaining == true, what's the max number of times we'll chain before yielding?
# none = no limit, can go on forever
self.max_chaining_steps = max_chaining_steps
# The default interface that will get assigned to agents ON LOAD
self.default_interface_factory = default_interface_factory
# Initialize the metadata store
config = LettaConfig.load()
if settings.letta_pg_uri_no_default:
config.recall_storage_type = "postgres"
config.recall_storage_uri = settings.letta_pg_uri_no_default
config.archival_storage_type = "postgres"
config.archival_storage_uri = settings.letta_pg_uri_no_default
config.save()
self.config = config
# Managers that interface with data models
self.organization_manager = OrganizationManager()
self.passage_manager = PassageManager()
self.user_manager = UserManager()
self.tool_manager = ToolManager()
self.block_manager = BlockManager()
self.source_manager = SourceManager()
self.sandbox_config_manager = SandboxConfigManager(tool_settings)
self.message_manager = MessageManager()
self.job_manager = JobManager()
self.agent_manager = AgentManager()
self.provider_manager = ProviderManager()
self.step_manager = StepManager()
# Managers that interface with parallelism
self.per_agent_lock_manager = PerAgentLockManager()
# Make default user and org
if init_with_default_org_and_user:
self.default_org = self.organization_manager.create_default_organization()
self.default_user = self.user_manager.create_default_user()
self.block_manager.add_default_blocks(actor=self.default_user)
self.tool_manager.upsert_base_tools(actor=self.default_user)
# Add composio keys to the tool sandbox env vars of the org
if tool_settings.composio_api_key:
manager = SandboxConfigManager(tool_settings)
sandbox_config = manager.get_or_create_default_sandbox_config(sandbox_type=SandboxType.LOCAL, actor=self.default_user)
manager.create_sandbox_env_var(
SandboxEnvironmentVariableCreate(key="COMPOSIO_API_KEY", value=tool_settings.composio_api_key),
sandbox_config_id=sandbox_config.id,
actor=self.default_user,
)
# collect providers (always has Letta as a default)
self._enabled_providers: List[Provider] = [LettaProvider()]
if model_settings.openai_api_key:
self._enabled_providers.append(
OpenAIProvider(
api_key=model_settings.openai_api_key,
base_url=model_settings.openai_api_base,
)
)
if model_settings.anthropic_api_key:
self._enabled_providers.append(
AnthropicProvider(
api_key=model_settings.anthropic_api_key,
)
)
if model_settings.ollama_base_url:
self._enabled_providers.append(
OllamaProvider(
base_url=model_settings.ollama_base_url,
api_key=None,
default_prompt_formatter=model_settings.default_prompt_formatter,
)
)
if model_settings.gemini_api_key:
self._enabled_providers.append(
GoogleAIProvider(
api_key=model_settings.gemini_api_key,
)
)
if model_settings.google_cloud_location and model_settings.google_cloud_project:
self._enabled_providers.append(
GoogleVertexProvider(
google_cloud_project=model_settings.google_cloud_project,
google_cloud_location=model_settings.google_cloud_location,
)
)
if model_settings.azure_api_key and model_settings.azure_base_url:
assert model_settings.azure_api_version, "AZURE_API_VERSION is required"
self._enabled_providers.append(
AzureProvider(
api_key=model_settings.azure_api_key,
base_url=model_settings.azure_base_url,
api_version=model_settings.azure_api_version,
)
)
if model_settings.groq_api_key:
self._enabled_providers.append(
GroqProvider(
api_key=model_settings.groq_api_key,
)
)
if model_settings.together_api_key:
self._enabled_providers.append(
TogetherProvider(
api_key=model_settings.together_api_key,
default_prompt_formatter=model_settings.default_prompt_formatter,
)
)
if model_settings.vllm_api_base:
# vLLM exposes both a /chat/completions and a /completions endpoint
self._enabled_providers.append(
VLLMCompletionsProvider(
base_url=model_settings.vllm_api_base,
default_prompt_formatter=model_settings.default_prompt_formatter,
)
)
# NOTE: to use the /chat/completions endpoint, you need to specify extra flags on vLLM startup
# see: https://docs.vllm.ai/en/latest/getting_started/examples/openai_chat_completion_client_with_tools.html
# e.g. "... --enable-auto-tool-choice --tool-call-parser hermes"
self._enabled_providers.append(
VLLMChatCompletionsProvider(
base_url=model_settings.vllm_api_base,
)
)
if model_settings.aws_access_key and model_settings.aws_secret_access_key and model_settings.aws_region:
self._enabled_providers.append(
AnthropicBedrockProvider(
aws_region=model_settings.aws_region,
)
)
# Attempt to enable LM Studio by default
if model_settings.lmstudio_base_url:
# Auto-append v1 to the base URL
lmstudio_url = (
model_settings.lmstudio_base_url
if model_settings.lmstudio_base_url.endswith("/v1")
else model_settings.lmstudio_base_url + "/v1"
)
self._enabled_providers.append(LMStudioOpenAIProvider(base_url=lmstudio_url))
def load_agent(self, agent_id: str, actor: User, interface: Union[AgentInterface, None] = None) -> Agent:
"""Updated method to load agents from persisted storage"""
agent_lock = self.per_agent_lock_manager.get_lock(agent_id)
with agent_lock:
agent_state = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
interface = interface or self.default_interface_factory()
if agent_state.agent_type == AgentType.memgpt_agent:
agent = Agent(agent_state=agent_state, interface=interface, user=actor)
elif agent_state.agent_type == AgentType.offline_memory_agent:
agent = OfflineMemoryAgent(agent_state=agent_state, interface=interface, user=actor)
elif agent_state.agent_type == AgentType.chat_only_agent:
agent = ChatOnlyAgent(agent_state=agent_state, interface=interface, user=actor)
else:
raise ValueError(f"Invalid agent type {agent_state.agent_type}")
return agent
def _step(
self,
actor: User,
agent_id: str,
input_messages: Union[Message, List[Message]],
interface: Union[AgentInterface, None] = None, # needed to getting responses
# timestamp: Optional[datetime],
) -> LettaUsageStatistics:
"""Send the input message through the agent"""
# TODO: Thread actor directly through this function, since the top level caller most likely already retrieved the user
# Input validation
if isinstance(input_messages, Message):
input_messages = [input_messages]
if not all(isinstance(m, Message) for m in input_messages):
raise ValueError(f"messages should be a Message or a list of Message, got {type(input_messages)}")
logger.debug(f"Got input messages: {input_messages}")
letta_agent = None
try:
letta_agent = self.load_agent(agent_id=agent_id, interface=interface, actor=actor)
if letta_agent is None:
raise KeyError(f"Agent (user={actor.id}, agent={agent_id}) is not loaded")
# Determine whether or not to token stream based on the capability of the interface
token_streaming = letta_agent.interface.streaming_mode if hasattr(letta_agent.interface, "streaming_mode") else False
logger.debug(f"Starting agent step")
if interface:
metadata = interface.metadata if hasattr(interface, "metadata") else None
else:
metadata = None
usage_stats = letta_agent.step(
messages=input_messages,
chaining=self.chaining,
max_chaining_steps=self.max_chaining_steps,
stream=token_streaming,
skip_verify=True,
metadata=metadata,
)
except Exception as e:
logger.error(f"Error in server._step: {e}")
print(traceback.print_exc())
raise
finally:
logger.debug("Calling step_yield()")
if letta_agent:
letta_agent.interface.step_yield()
return usage_stats
def _command(self, user_id: str, agent_id: str, command: str) -> LettaUsageStatistics:
"""Process a CLI command"""
# TODO: Thread actor directly through this function, since the top level caller most likely already retrieved the user
actor = self.user_manager.get_user_or_default(user_id=user_id)
logger.debug(f"Got command: {command}")
# Get the agent object (loaded in memory)
letta_agent = self.load_agent(agent_id=agent_id, actor=actor)
usage = None
if command.lower() == "exit":
# exit not supported on server.py
raise ValueError(command)
elif command.lower() == "save" or command.lower() == "savechat":
save_agent(letta_agent)
elif command.lower() == "attach":
# Different from CLI, we extract the data source name from the command
command = command.strip().split()
try:
data_source = int(command[1])
except:
raise ValueError(command)
# attach data to agent from source
letta_agent.attach_source(
user=self.user_manager.get_user_by_id(user_id=user_id),
source_id=data_source,
source_manager=self.source_manager,
agent_manager=self.agent_manager,
)
elif command.lower() == "dump" or command.lower().startswith("dump "):
# Check if there's an additional argument that's an integer
command = command.strip().split()
amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 0
if amount == 0:
letta_agent.interface.print_messages(letta_agent.messages, dump=True)
else:
letta_agent.interface.print_messages(letta_agent.messages[-min(amount, len(letta_agent.messages)) :], dump=True)
elif command.lower() == "dumpraw":
letta_agent.interface.print_messages_raw(letta_agent.messages)
elif command.lower() == "memory":
ret_str = f"\nDumping memory contents:\n" + f"\n{str(letta_agent.agent_state.memory)}" + f"\n{str(letta_agent.passage_manager)}"
return ret_str
elif command.lower() == "pop" or command.lower().startswith("pop "):
# Check if there's an additional argument that's an integer
command = command.strip().split()
pop_amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 3
n_messages = len(letta_agent.messages)
MIN_MESSAGES = 2
if n_messages <= MIN_MESSAGES:
logger.debug(f"Agent only has {n_messages} messages in stack, none left to pop")
elif n_messages - pop_amount < MIN_MESSAGES:
logger.debug(f"Agent only has {n_messages} messages in stack, cannot pop more than {n_messages - MIN_MESSAGES}")
else:
logger.debug(f"Popping last {pop_amount} messages from stack")
for _ in range(min(pop_amount, len(letta_agent.messages))):
letta_agent.messages.pop()
elif command.lower() == "retry":
# TODO this needs to also modify the persistence manager
logger.debug(f"Retrying for another answer")
while len(letta_agent.messages) > 0:
if letta_agent.messages[-1].get("role") == "user":
# we want to pop up to the last user message and send it again
letta_agent.messages[-1].get("content")
letta_agent.messages.pop()
break
letta_agent.messages.pop()
elif command.lower() == "rethink" or command.lower().startswith("rethink "):
# TODO this needs to also modify the persistence manager
if len(command) < len("rethink "):
logger.warning("Missing text after the command")
else:
for x in range(len(letta_agent.messages) - 1, 0, -1):
if letta_agent.messages[x].get("role") == "assistant":
text = command[len("rethink ") :].strip()
letta_agent.messages[x].update({"content": text})
break
elif command.lower() == "rewrite" or command.lower().startswith("rewrite "):
# TODO this needs to also modify the persistence manager
if len(command) < len("rewrite "):
logger.warning("Missing text after the command")
else:
for x in range(len(letta_agent.messages) - 1, 0, -1):
if letta_agent.messages[x].get("role") == "assistant":
text = command[len("rewrite ") :].strip()
args = json_loads(letta_agent.messages[x].get("function_call").get("arguments"))
args["message"] = text
letta_agent.messages[x].get("function_call").update({"arguments": json_dumps(args)})
break
# No skip options
elif command.lower() == "wipe":
# exit not supported on server.py
raise ValueError(command)
elif command.lower() == "heartbeat":
input_message = system.get_heartbeat()
usage = self._step(actor=actor, agent_id=agent_id, input_message=input_message)
elif command.lower() == "memorywarning":
input_message = system.get_token_limit_warning()
usage = self._step(actor=actor, agent_id=agent_id, input_message=input_message)
if not usage:
usage = LettaUsageStatistics()
return usage
def user_message(
self,
user_id: str,
agent_id: str,
message: Union[str, Message],
timestamp: Optional[datetime] = None,
) -> LettaUsageStatistics:
"""Process an incoming user message and feed it through the Letta agent"""
try:
actor = self.user_manager.get_user_by_id(user_id=user_id)
except NoResultFound:
raise ValueError(f"User user_id={user_id} does not exist")
try:
agent = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
except NoResultFound:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Basic input sanitization
if isinstance(message, str):
if len(message) == 0:
raise ValueError(f"Invalid input: '{message}'")
# If the input begins with a command prefix, reject
elif message.startswith("/"):
raise ValueError(f"Invalid input: '{message}'")
packaged_user_message = system.package_user_message(
user_message=message,
time=timestamp.isoformat() if timestamp else None,
)
# NOTE: eventually deprecate and only allow passing Message types
# Convert to a Message object
if timestamp:
message = Message(
agent_id=agent_id,
role="user",
content=[TextContent(text=packaged_user_message)],
created_at=timestamp,
)
else:
message = Message(
agent_id=agent_id,
role="user",
content=[TextContent(text=packaged_user_message)],
)
# Run the agent state forward
usage = self._step(actor=actor, agent_id=agent_id, input_messages=message)
return usage
def system_message(
self,
user_id: str,
agent_id: str,
message: Union[str, Message],
timestamp: Optional[datetime] = None,
) -> LettaUsageStatistics:
"""Process an incoming system message and feed it through the Letta agent"""
try:
actor = self.user_manager.get_user_by_id(user_id=user_id)
except NoResultFound:
raise ValueError(f"User user_id={user_id} does not exist")
try:
agent = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
except NoResultFound:
raise ValueError(f"Agent agent_id={agent_id} does not exist")
# Basic input sanitization
if isinstance(message, str):
if len(message) == 0:
raise ValueError(f"Invalid input: '{message}'")
# If the input begins with a command prefix, reject
elif message.startswith("/"):
raise ValueError(f"Invalid input: '{message}'")
packaged_system_message = system.package_system_message(system_message=message)
# NOTE: eventually deprecate and only allow passing Message types
# Convert to a Message object
if timestamp:
message = Message(
agent_id=agent_id,
role="system",
content=[TextContent(text=packaged_system_message)],
created_at=timestamp,
)
else:
message = Message(
agent_id=agent_id,
role="system",
content=[TextContent(text=packaged_system_message)],
)
if isinstance(message, Message):
# Can't have a null text field
if message.text is None or len(message.text) == 0:
raise ValueError(f"Invalid input: '{message.text}'")
# If the input begins with a command prefix, reject
elif message.text.startswith("/"):
raise ValueError(f"Invalid input: '{message.text}'")
else:
raise TypeError(f"Invalid input: '{message}' - type {type(message)}")
if timestamp:
# Override the timestamp with what the caller provided
message.created_at = timestamp
# Run the agent state forward
return self._step(actor=actor, agent_id=agent_id, input_messages=message)
def send_messages(
self,
actor: User,
agent_id: str,
messages: Union[List[MessageCreate], List[Message]],
# whether or not to wrap user and system message as MemGPT-style stringified JSON
wrap_user_message: bool = True,
wrap_system_message: bool = True,
interface: Union[AgentInterface, ChatCompletionsStreamingInterface, None] = None, # needed to getting responses
metadata: Optional[dict] = None, # Pass through metadata to interface
) -> LettaUsageStatistics:
"""Send a list of messages to the agent
If the messages are of type MessageCreate, we need to turn them into
Message objects first before sending them through step.
Otherwise, we can pass them in directly.
"""
message_objects: List[Message] = []
if all(isinstance(m, MessageCreate) for m in messages):
for message in messages:
assert isinstance(message, MessageCreate)
# If wrapping is enabled, wrap with metadata before placing content inside the Message object
if message.role == MessageRole.user and wrap_user_message:
message.content = system.package_user_message(user_message=message.content)
elif message.role == MessageRole.system and wrap_system_message:
message.content = system.package_system_message(system_message=message.content)
else:
raise ValueError(f"Invalid message role: {message.role}")
# Create the Message object
message_objects.append(
Message(
agent_id=agent_id,
role=message.role,
content=[TextContent(text=message.content)],
name=message.name,
# assigned later?
model=None,
# irrelevant
tool_calls=None,
tool_call_id=None,
)
)
elif all(isinstance(m, Message) for m in messages):
for message in messages:
assert isinstance(message, Message)
message_objects.append(message)
else:
raise ValueError(f"All messages must be of type Message or MessageCreate, got {[type(message) for message in messages]}")
# Store metadata in interface if provided
if metadata and hasattr(interface, "metadata"):
interface.metadata = metadata
# Run the agent state forward
return self._step(actor=actor, agent_id=agent_id, input_messages=message_objects, interface=interface)
# @LockingServer.agent_lock_decorator
def run_command(self, user_id: str, agent_id: str, command: str) -> LettaUsageStatistics:
"""Run a command on the agent"""
# If the input begins with a command prefix, attempt to process it as a command
if command.startswith("/"):
if len(command) > 1:
command = command[1:] # strip the prefix
return self._command(user_id=user_id, agent_id=agent_id, command=command)
def create_agent(
self,
request: CreateAgent,
actor: User,
# interface
interface: Union[AgentInterface, None] = None,
) -> AgentState:
if request.llm_config is None:
if request.model is None:
raise ValueError("Must specify either model or llm_config in request")
request.llm_config = self.get_llm_config_from_handle(handle=request.model, context_window_limit=request.context_window_limit)
if request.embedding_config is None:
if request.embedding is None:
raise ValueError("Must specify either embedding or embedding_config in request")
request.embedding_config = self.get_embedding_config_from_handle(
handle=request.embedding, embedding_chunk_size=request.embedding_chunk_size or constants.DEFAULT_EMBEDDING_CHUNK_SIZE
)
"""Create a new agent using a config"""
# Invoke manager
return self.agent_manager.create_agent(
agent_create=request,
actor=actor,
)
# convert name->id
# TODO: These can be moved to agent_manager
def get_agent_memory(self, agent_id: str, actor: User) -> Memory:
"""Return the memory of an agent (core memory)"""
return self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor).memory
def get_archival_memory_summary(self, agent_id: str, actor: User) -> ArchivalMemorySummary:
return ArchivalMemorySummary(size=self.agent_manager.passage_size(actor=actor, agent_id=agent_id))
def get_recall_memory_summary(self, agent_id: str, actor: User) -> RecallMemorySummary:
return RecallMemorySummary(size=self.message_manager.size(actor=actor, agent_id=agent_id))
def get_agent_archival(
self,
user_id: str,
agent_id: str,
after: Optional[str] = None,
before: Optional[str] = None,
limit: Optional[int] = 100,
order_by: Optional[str] = "created_at",
reverse: Optional[bool] = False,
) -> List[Passage]:
# TODO: Thread actor directly through this function, since the top level caller most likely already retrieved the user
actor = self.user_manager.get_user_or_default(user_id=user_id)
# iterate over records
records = self.agent_manager.list_passages(
actor=actor,
agent_id=agent_id,
after=after,
before=before,
limit=limit,
ascending=not reverse,
)
return records
def insert_archival_memory(self, agent_id: str, memory_contents: str, actor: User) -> List[Passage]:
# Get the agent object (loaded in memory)
agent_state = self.agent_manager.get_agent_by_id(agent_id=agent_id, actor=actor)
# Insert into archival memory
# TODO: @mindy look at moving this to agent_manager to avoid above extra call
passages = self.passage_manager.insert_passage(agent_state=agent_state, agent_id=agent_id, text=memory_contents, actor=actor)
return passages
def delete_archival_memory(self, memory_id: str, actor: User):
# TODO check if it exists first, and throw error if not
# TODO: @mindy make this return the deleted passage instead
self.passage_manager.delete_passage_by_id(passage_id=memory_id, actor=actor)
# TODO: return archival memory
def get_agent_recall(
self,
user_id: str,
agent_id: str,
after: Optional[str] = None,
before: Optional[str] = None,
limit: Optional[int] = 100,
reverse: Optional[bool] = False,
return_message_object: bool = True,
use_assistant_message: bool = True,
assistant_message_tool_name: str = constants.DEFAULT_MESSAGE_TOOL,
assistant_message_tool_kwarg: str = constants.DEFAULT_MESSAGE_TOOL_KWARG,
) -> Union[List[Message], List[LettaMessage]]:
# TODO: Thread actor directly through this function, since the top level caller most likely already retrieved the user
actor = self.user_manager.get_user_or_default(user_id=user_id)
records = self.message_manager.list_messages_for_agent(
agent_id=agent_id,
actor=actor,
after=after,
before=before,
limit=limit,
ascending=not reverse,
)
if not return_message_object:
records = Message.to_letta_messages_from_list(
messages=records,
use_assistant_message=use_assistant_message,
assistant_message_tool_name=assistant_message_tool_name,
assistant_message_tool_kwarg=assistant_message_tool_kwarg,
)
if reverse:
records = records[::-1]
return records
def get_server_config(self, include_defaults: bool = False) -> dict:
"""Return the base config"""
def clean_keys(config):
config_copy = config.copy()
for k, v in config.items():
if k == "key" or "_key" in k:
config_copy[k] = server_utils.shorten_key_middle(v, chars_each_side=5)
return config_copy
# TODO: do we need a separate server config?
base_config = vars(self.config)
clean_base_config = clean_keys(base_config)
response = {"config": clean_base_config}
if include_defaults:
default_config = vars(LettaConfig())
clean_default_config = clean_keys(default_config)
response["defaults"] = clean_default_config
return response
def update_agent_core_memory(self, agent_id: str, label: str, value: str, actor: User) -> Memory:
"""Update the value of a block in the agent's memory"""
# get the block id
block = self.agent_manager.get_block_with_label(agent_id=agent_id, block_label=label, actor=actor)
# update the block
self.block_manager.update_block(block_id=block.id, block_update=BlockUpdate(value=value), actor=actor)
# rebuild system prompt for agent, potentially changed
return self.agent_manager.rebuild_system_prompt(agent_id=agent_id, actor=actor).memory
def delete_source(self, source_id: str, actor: User):
"""Delete a data source"""
self.source_manager.delete_source(source_id=source_id, actor=actor)
# delete data from passage store
passages_to_be_deleted = self.agent_manager.list_passages(actor=actor, source_id=source_id, limit=None)
self.passage_manager.delete_passages(actor=actor, passages=passages_to_be_deleted)
# TODO: delete data from agent passage stores (?)
def load_file_to_source(self, source_id: str, file_path: str, job_id: str, actor: User) -> Job:
# update job
job = self.job_manager.get_job_by_id(job_id, actor=actor)
job.status = JobStatus.running
self.job_manager.update_job_by_id(job_id=job_id, job_update=JobUpdate(**job.model_dump()), actor=actor)
# try:
from letta.data_sources.connectors import DirectoryConnector
source = self.source_manager.get_source_by_id(source_id=source_id)
if source is None:
raise ValueError(f"Source {source_id} does not exist")
connector = DirectoryConnector(input_files=[file_path])
num_passages, num_documents = self.load_data(user_id=source.created_by_id, source_name=source.name, connector=connector)
# update job status
job.status = JobStatus.completed
job.metadata["num_passages"] = num_passages
job.metadata["num_documents"] = num_documents
self.job_manager.update_job_by_id(job_id=job_id, job_update=JobUpdate(**job.model_dump()), actor=actor)
# update all agents who have this source attached
agent_states = self.source_manager.list_attached_agents(source_id=source_id, actor=actor)
for agent_state in agent_states:
agent_id = agent_state.id
# Attach source to agent
curr_passage_size = self.agent_manager.passage_size(actor=actor, agent_id=agent_id)
self.agent_manager.attach_source(agent_id=agent_state.id, source_id=source_id, actor=actor)
new_passage_size = self.agent_manager.passage_size(actor=actor, agent_id=agent_id)
assert new_passage_size >= curr_passage_size # in case empty files are added
return job
def load_data(
self,
user_id: str,
connector: DataConnector,
source_name: str,
) -> Tuple[int, int]:
"""Load data from a DataConnector into a source for a specified user_id"""
# TODO: this should be implemented as a batch job or at least async, since it may take a long time
# load data from a data source into the document store
user = self.user_manager.get_user_by_id(user_id=user_id)
source = self.source_manager.get_source_by_name(source_name=source_name, actor=user)
if source is None:
raise ValueError(f"Data source {source_name} does not exist for user {user_id}")
# load data into the document store
passage_count, document_count = load_data(connector, source, self.passage_manager, self.source_manager, actor=user)
return passage_count, document_count
def list_data_source_passages(self, user_id: str, source_id: str) -> List[Passage]:
# TODO: move this query into PassageManager
return self.agent_manager.list_passages(actor=self.user_manager.get_user_or_default(user_id=user_id), source_id=source_id)
def list_all_sources(self, actor: User) -> List[Source]:
"""List all sources (w/ extra metadata) belonging to a user"""
sources = self.source_manager.list_sources(actor=actor)
# Add extra metadata to the sources
sources_with_metadata = []
for source in sources:
# count number of passages
num_passages = self.agent_manager.passage_size(actor=actor, source_id=source.id)
# TODO: add when files table implemented
## count number of files
# document_conn = StorageConnector.get_storage_connector(TableType.FILES, self.config, user_id=user_id)
# num_documents = document_conn.size({"data_source": source.name})
num_documents = 0
agents = self.source_manager.list_attached_agents(source_id=source.id, actor=actor)
# add the agent name information
attached_agents = [{"id": agent.id, "name": agent.name} for agent in agents]
# Overwrite metadata field, should be empty anyways
source.metadata = dict(
num_documents=num_documents,
num_passages=num_passages,
attached_agents=attached_agents,
)
sources_with_metadata.append(source)
return sources_with_metadata
def update_agent_message(self, message_id: str, request: MessageUpdate, actor: User) -> Message:
"""Update the details of a message associated with an agent"""
# Get the current message
return self.message_manager.update_message_by_id(message_id=message_id, message_update=request, actor=actor)
def get_organization_or_default(self, org_id: Optional[str]) -> Organization:
"""Get the organization object for org_id if it exists, otherwise return the default organization object"""
if org_id is None:
org_id = self.organization_manager.DEFAULT_ORG_ID
try:
return self.organization_manager.get_organization_by_id(org_id=org_id)
except NoResultFound:
raise HTTPException(status_code=404, detail=f"Organization with id {org_id} not found")
def list_llm_models(self) -> List[LLMConfig]:
"""List available models"""
llm_models = []
for provider in self.get_enabled_providers():
try:
llm_models.extend(provider.list_llm_models())
except Exception as e:
warnings.warn(f"An error occurred while listing LLM models for provider {provider}: {e}")
llm_models.extend(self.get_local_llm_configs())
return llm_models
def list_embedding_models(self) -> List[EmbeddingConfig]:
"""List available embedding models"""
embedding_models = []
for provider in self.get_enabled_providers():
try:
embedding_models.extend(provider.list_embedding_models())
except Exception as e:
warnings.warn(f"An error occurred while listing embedding models for provider {provider}: {e}")
return embedding_models
def get_enabled_providers(self):
providers_from_env = {p.name: p for p in self._enabled_providers}
providers_from_db = {p.name: p for p in self.provider_manager.list_providers()}
# Merge the two dictionaries, keeping the values from providers_from_db where conflicts occur
return {**providers_from_env, **providers_from_db}.values()
def get_llm_config_from_handle(self, handle: str, context_window_limit: Optional[int] = None) -> LLMConfig:
try:
provider_name, model_name = handle.split("/", 1)
provider = self.get_provider_from_name(provider_name)
llm_configs = [config for config in provider.list_llm_models() if config.handle == handle]
if not llm_configs:
llm_configs = [config for config in provider.list_llm_models() if config.model == model_name]
if not llm_configs:
raise ValueError(f"LLM model {model_name} is not supported by {provider_name}")
except ValueError as e:
llm_configs = [config for config in self.get_local_llm_configs() if config.handle == handle]
if not llm_configs:
raise e
if len(llm_configs) == 1:
llm_config = llm_configs[0]
elif len(llm_configs) > 1:
raise ValueError(f"Multiple LLM models with name {model_name} supported by {provider_name}")
else:
llm_config = llm_configs[0]
if context_window_limit:
if context_window_limit > llm_config.context_window:
raise ValueError(f"Context window limit ({context_window_limit}) is greater than maximum of ({llm_config.context_window})")
llm_config.context_window = context_window_limit
return llm_config
def get_embedding_config_from_handle(
self, handle: str, embedding_chunk_size: int = constants.DEFAULT_EMBEDDING_CHUNK_SIZE
) -> EmbeddingConfig:
provider_name, model_name = handle.split("/", 1)
provider = self.get_provider_from_name(provider_name)
embedding_configs = [config for config in provider.list_embedding_models() if config.handle == handle]
if len(embedding_configs) == 1:
embedding_config = embedding_configs[0]
else:
embedding_configs = [config for config in provider.list_embedding_models() if config.embedding_model == model_name]
if not embedding_configs:
raise ValueError(f"Embedding model {model_name} is not supported by {provider_name}")
elif len(embedding_configs) > 1:
raise ValueError(f"Multiple embedding models with name {model_name} supported by {provider_name}")
else:
embedding_config = embedding_configs[0]
if embedding_chunk_size:
embedding_config.embedding_chunk_size = embedding_chunk_size
return embedding_config
def get_provider_from_name(self, provider_name: str) -> Provider:
providers = [provider for provider in self._enabled_providers if provider.name == provider_name]
if not providers:
raise ValueError(f"Provider {provider_name} is not supported")
elif len(providers) > 1:
raise ValueError(f"Multiple providers with name {provider_name} supported")
else:
provider = providers[0]
return provider
def get_local_llm_configs(self):
llm_models = []
try:
llm_configs_dir = os.path.expanduser("~/.letta/llm_configs")
if os.path.exists(llm_configs_dir):
for filename in os.listdir(llm_configs_dir):
if filename.endswith(".json"):
filepath = os.path.join(llm_configs_dir, filename)
try:
with open(filepath, "r") as f:
config_data = json.load(f)
llm_config = LLMConfig(**config_data)
llm_models.append(llm_config)
except (json.JSONDecodeError, ValueError) as e:
warnings.warn(f"Error parsing LLM config file {filename}: {e}")
except Exception as e:
warnings.warn(f"Error reading LLM configs directory: {e}")
return llm_models
def add_llm_model(self, request: LLMConfig) -> LLMConfig:
"""Add a new LLM model"""
def add_embedding_model(self, request: EmbeddingConfig) -> EmbeddingConfig:
"""Add a new embedding model"""
def get_agent_context_window(self, agent_id: str, actor: User) -> ContextWindowOverview:
letta_agent = self.load_agent(agent_id=agent_id, actor=actor)
return letta_agent.get_context_window()
def run_tool_from_source(
self,
actor: User,
tool_args: Dict[str, str],
tool_source: str,
tool_env_vars: Optional[Dict[str, str]] = None,
tool_source_type: Optional[str] = None,
tool_name: Optional[str] = None,
) -> ToolReturnMessage:
"""Run a tool from source code"""
if tool_source_type is not None and tool_source_type != "python":
raise ValueError("Only Python source code is supported at this time")
# NOTE: we're creating a floating Tool object and NOT persisting to DB
tool = Tool(
name=tool_name,
source_code=tool_source,
)
assert tool.name is not None, "Failed to create tool object"
# TODO eventually allow using agent state in tools
agent_state = None
# Next, attempt to run the tool with the sandbox
try:
sandbox_run_result = ToolExecutionSandbox(tool.name, tool_args, actor, tool_object=tool).run(
agent_state=agent_state, additional_env_vars=tool_env_vars
)
return ToolReturnMessage(
id="null",
tool_call_id="null",
date=get_utc_time(),
status=sandbox_run_result.status,
tool_return=str(sandbox_run_result.func_return),
stdout=sandbox_run_result.stdout,
stderr=sandbox_run_result.stderr,
)
except Exception as e:
func_return = get_friendly_error_msg(function_name=tool.name, exception_name=type(e).__name__, exception_message=str(e))
return ToolReturnMessage(
id="null",
tool_call_id="null",
date=get_utc_time(),
status="error",
tool_return=func_return,
stdout=[],
stderr=[traceback.format_exc()],
)
# Composio wrappers
def get_composio_client(self, api_key: Optional[str] = None):
if api_key:
return Composio(api_key=api_key)
elif tool_settings.composio_api_key:
return Composio(api_key=tool_settings.composio_api_key)
else:
return Composio()
def get_composio_apps(self, api_key: Optional[str] = None) -> List["AppModel"]:
"""Get a list of all Composio apps with actions"""
apps = self.get_composio_client(api_key=api_key).apps.get()
apps_with_actions = []
for app in apps:
# A bit of hacky logic until composio patches this
if app.meta["actionsCount"] > 0 and not app.name.lower().endswith("_beta"):
apps_with_actions.append(app)
return apps_with_actions
def get_composio_actions_from_app_name(self, composio_app_name: str, api_key: Optional[str] = None) -> List["ActionModel"]:
actions = self.get_composio_client(api_key=api_key).actions.get(apps=[composio_app_name])
return actions
async def send_message_to_agent(
self,
agent_id: str,
actor: User,
# role: MessageRole,
messages: Union[List[Message], List[MessageCreate]],
stream_steps: bool,
stream_tokens: bool,
# related to whether or not we return `LettaMessage`s or `Message`s
chat_completion_mode: bool = False,
# Support for AssistantMessage
use_assistant_message: bool = True,
assistant_message_tool_name: str = constants.DEFAULT_MESSAGE_TOOL,
assistant_message_tool_kwarg: str = constants.DEFAULT_MESSAGE_TOOL_KWARG,
metadata: Optional[dict] = None,
) -> Union[StreamingResponse, LettaResponse]:
"""Split off into a separate function so that it can be imported in the /chat/completion proxy."""
# TODO: @charles is this the correct way to handle?
include_final_message = True
if not stream_steps and stream_tokens:
raise HTTPException(status_code=400, detail="stream_steps must be 'true' if stream_tokens is 'true'")
# For streaming response
try:
# TODO: move this logic into server.py
# Get the generator object off of the agent's streaming interface
# This will be attached to the POST SSE request used under-the-hood
letta_agent = self.load_agent(agent_id=agent_id, actor=actor)
# Disable token streaming if not OpenAI or Anthropic
# TODO: cleanup this logic
llm_config = letta_agent.agent_state.llm_config
if stream_tokens and (
llm_config.model_endpoint_type not in ["openai", "anthropic"] or "inference.memgpt.ai" in llm_config.model_endpoint
):
warnings.warn(
f"Token streaming is only supported for models with type 'openai' or 'anthropic' in the model_endpoint: agent has endpoint type {llm_config.model_endpoint_type} and {llm_config.model_endpoint}. Setting stream_tokens to False."
)
stream_tokens = False
# Create a new interface per request
letta_agent.interface = StreamingServerInterface(
# multi_step=True, # would we ever want to disable this?
use_assistant_message=use_assistant_message,
assistant_message_tool_name=assistant_message_tool_name,
assistant_message_tool_kwarg=assistant_message_tool_kwarg,
inner_thoughts_in_kwargs=(
llm_config.put_inner_thoughts_in_kwargs if llm_config.put_inner_thoughts_in_kwargs is not None else False
),
# inner_thoughts_kwarg=INNER_THOUGHTS_KWARG,
)
streaming_interface = letta_agent.interface
if not isinstance(streaming_interface, StreamingServerInterface):
raise ValueError(f"Agent has wrong type of interface: {type(streaming_interface)}")
# Enable token-streaming within the request if desired
streaming_interface.streaming_mode = stream_tokens
# "chatcompletion mode" does some remapping and ignores inner thoughts
streaming_interface.streaming_chat_completion_mode = chat_completion_mode
# streaming_interface.allow_assistant_message = stream
# streaming_interface.function_call_legacy_mode = stream
# Allow AssistantMessage is desired by client
# streaming_interface.use_assistant_message = use_assistant_message
# streaming_interface.assistant_message_tool_name = assistant_message_tool_name
# streaming_interface.assistant_message_tool_kwarg = assistant_message_tool_kwarg
# Related to JSON buffer reader
# streaming_interface.inner_thoughts_in_kwargs = (
# llm_config.put_inner_thoughts_in_kwargs if llm_config.put_inner_thoughts_in_kwargs is not None else False
# )
# Offload the synchronous message_func to a separate thread
streaming_interface.stream_start()
task = asyncio.create_task(
asyncio.to_thread(
self.send_messages,
actor=actor,
agent_id=agent_id,
messages=messages,
interface=streaming_interface,
metadata=metadata,
)
)
if stream_steps:
# return a stream
return StreamingResponse(
sse_async_generator(
streaming_interface.get_generator(),
usage_task=task,
finish_message=include_final_message,
),
media_type="text/event-stream",
)
else:
# buffer the stream, then return the list
generated_stream = []
async for message in streaming_interface.get_generator():
assert (
isinstance(message, LettaMessage)
or isinstance(message, LegacyLettaMessage)
or isinstance(message, MessageStreamStatus)
), type(message)
generated_stream.append(message)
if message == MessageStreamStatus.done:
break
# Get rid of the stream status messages
filtered_stream = [d for d in generated_stream if not isinstance(d, MessageStreamStatus)]
usage = await task
# By default the stream will be messages of type LettaMessage or LettaLegacyMessage
# If we want to convert these to Message, we can use the attached IDs
# NOTE: we will need to de-duplicate the Messsage IDs though (since Assistant->Inner+Func_Call)
# TODO: eventually update the interface to use `Message` and `MessageChunk` (new) inside the deque instead
return LettaResponse(messages=filtered_stream, usage=usage)
except HTTPException:
raise
except Exception as e:
print(e)
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"{e}")