MemGPT/memgpt/autogen/memgpt_agent.py

243 lines
8.9 KiB
Python

from autogen.agentchat import Agent, ConversableAgent, UserProxyAgent, GroupChat, GroupChatManager
from ..agent import Agent as _Agent
import asyncio
from typing import Callable, Optional, List, Dict, Union, Any, Tuple
from .interface import AutoGenInterface
from ..persistence_manager import InMemoryStateManager
from .. import system
from .. import constants
from .. import presets
from ..personas import personas
from ..humans import humans
from ..config import AgentConfig
def create_memgpt_autogen_agent_from_config(
name: str,
system_message: Optional[str] = "You are a helpful AI Assistant.",
is_termination_msg: Optional[Callable[[Dict], bool]] = None,
max_consecutive_auto_reply: Optional[int] = None,
human_input_mode: Optional[str] = "ALWAYS",
function_map: Optional[Dict[str, Callable]] = None,
code_execution_config: Optional[Union[Dict, bool]] = None,
llm_config: Optional[Union[Dict, bool]] = None,
default_auto_reply: Optional[Union[str, Dict, None]] = "",
):
"""Construct AutoGen config workflow in a clean way."""
model = constants.DEFAULT_MEMGPT_MODEL if llm_config is None else llm_config["config_list"][0]["model"]
persona_desc = personas.DEFAULT if system_message == "" else system_message
if human_input_mode == "ALWAYS":
user_desc = humans.DEFAULT
elif human_input_mode == "TERMINATE":
user_desc = "Work by yourself, the user won't reply until you output `TERMINATE` to end the conversation."
else:
user_desc = "Work by yourself, the user won't reply. Elaborate as much as possible."
if function_map is not None or code_execution_config is not None:
raise NotImplementedError
autogen_memgpt_agent = create_autogen_memgpt_agent(
name,
preset=presets.DEFAULT_PRESET,
model=model,
persona_description=persona_desc,
user_description=user_desc,
is_termination_msg=is_termination_msg,
)
if human_input_mode != "ALWAYS":
coop_agent1 = create_autogen_memgpt_agent(
name,
preset=presets.DEFAULT_PRESET,
model=model,
persona_description=persona_desc,
user_description=user_desc,
is_termination_msg=is_termination_msg,
)
if default_auto_reply != "":
coop_agent2 = UserProxyAgent(
name,
human_input_mode="NEVER",
default_auto_reply=default_auto_reply,
)
else:
coop_agent2 = create_autogen_memgpt_agent(
name,
preset=presets.DEFAULT_PRESET,
model=model,
persona_description=persona_desc,
user_description=user_desc,
is_termination_msg=is_termination_msg,
)
groupchat = GroupChat(
agents=[autogen_memgpt_agent, coop_agent1, coop_agent2],
messages=[],
max_round=12 if max_consecutive_auto_reply is None else max_consecutive_auto_reply,
)
manager = GroupChatManager(name=name, groupchat=groupchat, llm_config=llm_config)
return manager
else:
return autogen_memgpt_agent
def create_autogen_memgpt_agent(
autogen_name,
preset=presets.SYNC_CHAT,
model=constants.DEFAULT_MEMGPT_MODEL,
persona_description=personas.DEFAULT,
user_description=humans.DEFAULT,
interface=None,
interface_kwargs={},
persistence_manager=None,
persistence_manager_kwargs={},
is_termination_msg: Optional[Callable[[Dict], bool]] = None,
):
"""
See AutoGenInterface.__init__ for available options you can pass into
`interface_kwargs`. For example, MemGPT's inner monologue and functions are
off by default so that they are not visible to the other agents. You can
turn these on by passing in
```
interface_kwargs={
"debug": True, # to see all MemGPT activity
"show_inner_thoughts: True # to print MemGPT inner thoughts "globally"
# (visible to all AutoGen agents)
}
```
"""
interface = AutoGenInterface(**interface_kwargs) if interface is None else interface
persistence_manager = InMemoryStateManager(**persistence_manager_kwargs) if persistence_manager is None else persistence_manager
agent_config = AgentConfig(
name=autogen_name,
persona=persona_description,
human=user_description,
model=model,
preset=presets.SYNC_CHAT,
)
memgpt_agent = presets.use_preset(
preset,
agent_config,
model,
persona_description,
user_description,
interface,
persistence_manager,
)
autogen_memgpt_agent = MemGPTAgent(
name=autogen_name,
agent=memgpt_agent,
is_termination_msg=is_termination_msg,
)
return autogen_memgpt_agent
class MemGPTAgent(ConversableAgent):
def __init__(
self,
name: str,
agent: _Agent,
skip_verify=False,
concat_other_agent_messages=False,
is_termination_msg: Optional[Callable[[Dict], bool]] = None,
):
super().__init__(name)
self.agent = agent
self.skip_verify = skip_verify
self.concat_other_agent_messages = concat_other_agent_messages
self.register_reply([Agent, None], MemGPTAgent._generate_reply_for_user_message)
self.messages_processed_up_to_idx = 0
self._is_termination_msg = is_termination_msg if is_termination_msg is not None else (lambda x: x == "TERMINATE")
def format_other_agent_message(self, msg):
if "name" in msg:
user_message = f"{msg['name']}: {msg['content']}"
else:
user_message = msg["content"]
return user_message
def find_last_user_message(self):
last_user_message = None
for msg in self.agent.messages:
if msg["role"] == "user":
last_user_message = msg["content"]
return last_user_message
def find_new_messages(self, entire_message_list):
"""Extract the subset of messages that's actually new"""
return entire_message_list[self.messages_processed_up_to_idx :]
def _generate_reply_for_user_message(
self,
messages: Optional[List[Dict]] = None,
sender: Optional[Agent] = None,
config: Optional[Any] = None,
) -> Tuple[bool, Union[str, Dict, None]]:
self.agent.interface.reset_message_list()
new_messages = self.find_new_messages(messages)
if len(new_messages) > 1:
if self.concat_other_agent_messages:
# Combine all the other messages into one message
user_message = "\n".join([self.format_other_agent_message(m) for m in new_messages])
else:
# Extend the MemGPT message list with multiple 'user' messages, then push the last one with agent.step()
self.agent.messages.extend(new_messages[:-1])
user_message = new_messages[-1]
elif len(new_messages) == 1:
user_message = new_messages[0]
else:
return True, self._default_auto_reply
# Package the user message
user_message = system.package_user_message(user_message)
# Send a single message into MemGPT
while True:
(
new_messages,
heartbeat_request,
function_failed,
token_warning,
) = self.agent.step(user_message, first_message=False, skip_verify=self.skip_verify)
# Skip user inputs if there's a memory warning, function execution failed, or the agent asked for control
if token_warning:
user_message = system.get_token_limit_warning()
elif function_failed:
user_message = system.get_heartbeat(constants.FUNC_FAILED_HEARTBEAT_MESSAGE)
elif heartbeat_request:
user_message = system.get_heartbeat(constants.REQ_HEARTBEAT_MESSAGE)
else:
break
# Stop the conversation
if self._is_termination_msg(new_messages[-1]["content"]):
return True, None
# Pass back to AutoGen the pretty-printed calls MemGPT made to the interface
pretty_ret = MemGPTAgent.pretty_concat(self.agent.interface.message_list)
self.messages_processed_up_to_idx += len(new_messages)
return True, pretty_ret
return asyncio.run(self._a_generate_reply_for_user_message(messages=messages, sender=sender, config=config))
@staticmethod
def pretty_concat(messages):
"""AutoGen expects a single response, but MemGPT may take many steps.
To accommodate AutoGen, concatenate all of MemGPT's steps into one and return as a single message.
"""
ret = {"role": "assistant", "content": ""}
lines = []
for m in messages:
lines.append(f"{m}")
ret["content"] = "\n".join(lines)
return ret